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Abstract

In this work the following three basic research questions are discussed: (1) can sig-
nificant effects of modality efficiency and input performance on the selection of
input modalities in multimodal HCI be disclosed by unified experimental investiga-
tions? (2) Can a utility-driven computational model of modality selection be formed
based on empirical data? (3) Can the compiled model for modality selection be uti-
lized for the practical application in the field of automated usability evaluation?

Initially, foundations of decision-making in multimodal HCI are discussed, and
the state of the art in automatic usability evaluation (AUE) is described. It is shown
that there are currently no uniform empirical results on factors influencing modality
choice that allow for the creation of a computational model. As part of this work two
AUE tools, the MeMo workbench and CogTool, are extended by a newly created
computational model for the simulation of multimodal HCI.

Aiming at answering the first research question, the empirical part of the thesis
describes three experiments with a mobile application integrating touch screen and
speech input. In summary the results indicate that modality efficiency and input
performance are important moderators of modality choice.

The second research question is answered by the derivation of a utility-driven
model for input modality choice in multimodal HCI based on the empirical data.
The model provides probability estimations of modality usage, based on different
levels of the parameters modality efficiency and input performance. Four variants of
the model that differ in training data are tested. The analysis reveals a considerable
fit for models based on averaged modality usage data.

Answering the third research question it is illustrated how the modality choice
model can be deployed within AUE tools for simulating multimodal interaction.
The multimodal extension as well as the practical utilization of MeMo is depicted,
and it is described how unimodal CogTool models of touch screen and speech based
interaction can be rendered into multimodal models. A comparison of data gener-
ated by simulations with the AUE tools with predictions of the derived modality
selection algorithm verifies the correct integration of the model into the tools. The
practical application discloses the usefulness of the modality choice model for the
prediction of the number of steps and the total time spent to solve specific tasks with
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multimodal systems. The practical part is concluded by a comparison of Memo and
CogTool. Both tools are classified, and an assessment on a subjective basis as well
as on the the basis of the quality of predictions is conducted.

Summary and outlook condense the added value provided by the thesis, and iden-
tify starting points for future work.
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Zusammenfassung

In dieser Arbeit werden die folgenden drei grundlegenden Forschungsfragen disku-
tiert: (1) können durch vereinheitlichte experimentelle Untersuchungen signifikante
Auswirkungen der Modalitäteneffizienz und der Performanz der Eingabemodalität
auf die Auswahl von Eingabemodalitäten in multimodaler Mensch-Computer In-
teraktion offen gelegt werden? (2) kann auf der Grundlage empirischer Daten ein
Utility-gesteuertes Rechenmodell der Modalitätenwahl gebildet werden? (3) Kann
das erstellte Modell für die Modalitätenwahl auf dem Gebiet der automatischen Be-
wertung der Benutzerfreundlichkeit (Usability) praktisch eingesetzt werden?

Zunächst werden Grundlagen der Entscheidungsfindung in multimodaler Mensch-
Computer-Interaktion diskutiert, und der Stand der Technik in der automatischen
Usability Evaluation (AUE) beschrieben. Es wird aufgezeigt, dass bisher keine ein-
heitlichen empirischen Ergebnisse zu Einflussfaktoren der Modalitätenwahl vor-
handen sind, die die Erzeugung eines Rechenmodells ermöglichen. Im Rahmen
dieser Arbeit werden zwei AUE Werkzeuge, die MeMo Werkbank und CogTool,
durch ein neu erstelltes Computermodell zur Simulation von multimodaler Mensch-
Computer-Interaktion erweitert.

Mit dem Ziel, der Beantwortung der ersten Forschungsfrage, werden im em-
pirischen Teil der Arbeit drei Experimente mit einer mobilen Anwendung beschrie-
ben, welche Touchscreen und Spracheingabe integriert. Zusammenfassend zeigen
die Ergebnisse, dass sowohl die Modalitäteneffizienz als auch die Performanz der
Eingabemodalitäten wichtige Einflussfaktoren der Modalitätenwahl sind.

Die zweite Forschungsfrage wird durch die Herleitung eines Utility-gesteuerten
Modells zur Auswahl von Eingabemodalitäten in multimodaler Mensch-Computer-
Interaktion auf der Grundlage der empirischen Daten beantwortet. Das Modell
liefert Wahrscheinlichkeitsschätzungen der Modalitätennutzung, basierend auf un-
terschiedlichen Niveaus der Parameter Modalitäteneffizienz und Performanz der
Eingabemodalität. Vier Varianten des Modells, die sich in den Trainingsdaten unter-
scheiden, werden untersucht. Die Analyse zeigt eine beträchtliche Vorhersagegüte
für die Modelle die auf der gemittelten Modalitätennutzungsdaten basieren.

Zur Beantwortung der dritten Forschungsfrage wird dargestellt, wie das Modell
für die Modalitätenwahl zur Simulation multimodaler Interaktion in AUE Werkzeu-
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gen eingesetzt werden kann. Die Erweiterungen für Multimodalität sowie die prak-
tische Nutzung von MeMo werden aufgezeigt, und es wird beschrieben, wie uni-
modale CogTool Modelle für Touchscreen- und sprachbasierte Interaktion in multi-
modale Modelle überführt werden können. Ein Vergleich der Daten, die durch Simu-
lation mit den AUE Werkzeugen erzeugt werden, mit den Vorhersagen des hergeleit-
eten Modalitätwahlalgorithmus, bestätigt die korrekte Integration des Modells in die
Werkzeuge. Bei der praktischen Anwendung durch die AUE Werkzeuge erweist sich
die Nutzbarkeit des Modells für die Vorhersage der Anzahl von Schritten und der
Bearbeitungszeit bestimmter Aufgaben mit multimodalen Systemen. Der praktische
Teil wird mit einem Vergleich von Memo und CogTool abgeschlossen bei dem die
Werkzeuge zunächst einordnet werden, und dann anhand der Vorhersagegüte sowie
subjektiv beurteilt werden.

Zusammenfassung und Ausblick kondensieren den Mehrwert dieser Doktorar-
beit und zeigen Ansatzpunkte für die zukünftige Forschung auf.
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Chapter 1
Introduction

Recent developments in human-computer interaction (HCI) show that an increas-
ing numbers of dialog systems offer more than one option to enable user input.
Smartphones or navigational systems often come with an additional speech inter-
face (Schaffer et al., 2016). Speech-based interactive systems are a subject of current
research (Jokinen and Cheng, 2010) and new devices such as smart watches arise
whereby speech as an input modality is becoming increasingly important (Nurminen
et al., 2015). However, the Graphical User Interface (GUI) is still the more common
input modality in those systems.

Touch screens are now a standard input method for the GUI. If an additional
speech interface is integrated into a system where only a GUI was previously avail-
able, a multimodal dialog system (MDS) is built. Examples of such systems are
Apple’s iPhone extended with the speech interface Siri (Apple, 2011) and Android
smart phones provided with google voice search (Franz et al., 2006). Both systems
enable the use of selected spoken commands for specific interactions.

Employing speech input often saves interaction steps or time. A novice user de-
ploying this benefit, however, will not know exactly if or how a speech-based in-
teraction is possible. Experience is needed and, if the user in not accustomed to
the system, reasoning and decision-making processes increase the cognitive load
(Sweller, 1988). One possible way to avoid this additional load would be to make
any modality possible at any point in the interaction.

Input modalities would then be processed sequentially and independently (Ni-
gay and Coutaz, 1993). Sequential processing here means that users may perform
system input only consecutively regardless which modality they use. Independent
processing means that modalities are interpreted separately and no semantic fusion
is performed. In doing so, a system would provide a graphical input element like
a button and a speech input for each interaction. The previously mentioned smart
phone examples fit only partly into this category of systems, as they integrate speech
interaction only for very specialized tasks like menu navigation or keyboard typing.

In the domain of consumer products almost no sequential independent multi-
modal systems (SIMS) that allow any interaction using any modality have appeared
on the market so far. An unsolved issue with speech input is that direct interaction

1
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via spoken commands still does not work sufficiently well because actual automatic
speech recognition (ASR) modules cause too many errors, e.g., by processing extra-
neous background noise as user input. Accordingly, push-to-talk or ”Open micro-
phone in combination with Key-word-spotting Systems” (OKS) are used to enable
speech input. However, these implementations need at least one additional step dur-
ing the interaction to activate ASR.

Assuming further improvements in ASR technology during the next years, future
SIMS might have no need for push-to-talk or OKS. OKS might be implemented in
an effective manner minimizing interaction time and cognitive resources. With these
systems, any graphical and speech input will be entirely possible for each achievable
task. Further, users will have to select input modalities in each step during the dialog
with the system.

The selection of input modalities is influenced by various factors. Several studies
revealed that input performance (like ASR error rate) and modality efficiency (mea-
sured in the number of turns to solve a task) are significant moderators in multimodal
systems integrating a graphical and speech input (Möller et al., 2011; Schaffer et al.,
2011a; Wechsung et al., 2010). Other documented influence factors are cognitive
demand (Wickens and Hollands, 2000), interaction time (Bevan, 1995), hedonic
quality (Hassenzahl et al., 2003), environment, and dynamic as well as static user
attributes (Bohn et al., 2005; Ren et al., 2000).

The evaluation of the quality of MDS is a a current research area (Möller et al.,
2011; Perakakis and Potamianos, 2008; Turunen et al., 2010). Thereby many meth-
ods are based on evaluations, using questionnaires in order to gain quality percep-
tions from real system users (Metze et al., 2009; Kühnel et al., 2010; Turunen et al.,
2010). However, studies with real test subjects are at most expensive with respect
to typically limited resources of time and money. Here effort could be saved by au-
tomated usability evaluation (AUE). In AUE predictions about quality factors of a
system can be created automatically. The predictions are usually derived from pa-
rameters, which are obtained by the simulation of interaction between models of
users and systems.

1.1 Research Gaps in multimodal Human-Computer Interaction

Even if quantitative data is collected in most of the studies about the choice of input
modalities, the obtained results are often qualitative in nature. But even more harm-
ful for the above mentioned purpose of modeling is the fact that, in most cases, the
gathered quantitative data is not comparable due to differing experimental setups,
interfaces, logged data, or user groups. This lack of quantitative data still keeps HCI
researchers from a better understanding of the interdependencies of the factors influ-
encing modality selection and complicates the construction of applicable theoretical
and computational models. The existence of these models is a requirement for fa-
cilitating simulation of multimodal HCI between user and system models, which
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further enables automated usability evaluation (AUE). Addressing this complex of
problems this work identifies the following three research gaps:

1. The lack of quantitative findings regarding modality selection.
2. The lack of computational models for modality selection.
3. The lack of AUE tools for the simulation of multimodal HCI.

The first research gap addresses empirical research. In order to design empiri-
cal studies investigating modality selection the adoption of a cognitive perspective
is important because the participants of experiments must be able to perceive the
relevant information. Foundations of decision-making, human information process-
ing, multiple ressource theory (MRT), and heuristics have to be adopted in order to
appropriately consider the human factor (Thüring, 2002). It should be able to pro-
vide quantitative findings regarding modality selection, if the experimental setups
are mostly uniform concerning interfaces, log data, and user groups. Further the in-
dependent factors have to be varied in a uniform manner and in appropriate levels.
The above-mentioned factors input performance and modality efficiency turn out to
be adequate candidates for a unified quantitative investigation of modality selection
as they showed significant effects in previous studies (Möller et al., 2011; Schaffer
et al., 2011a; Wechsung et al., 2010). However the mentioned studies investigated
different systems, and further more different levels of the independent factors are
needed for model creation. Therefore quantitative modality selection data has to be
collected. In order to collect the amount of data that is needed for the creation of a
model of modality selection that handles more then one influence factor a series of
uniform experiments has to be conducted.

The second research gap addresses the field of computational modeling. If the
first gap can be closed target data for computational models is available. Utility
functions are often used for making rational decisions (Gray et al., 2006). Proba-
bilistic (Möller et al., 2006) or cognitive models (Anderson et al., 1997) can utilize
utility functions to simulate decisions for modality selection. Therefore the eventual
aim is to compile a model utilizing a utility function for the prediction of modality
usage in SIMS.

The third research gap addresses the practical application of modality selection
within AUE tools. If the second gap can be closed an algorithm for modality selec-
tion is available. The AUE tools to be extended should already support both graph-
ical and speech input. In addition, the tools should differ in their fields of applica-
tion, so that the integration of the modality selection algorithm can be tested for
these different areas. On the one hand MeMo (Möller et al., 2006) was identified.
MeMo finds different interaction paths for a task and identifies potential usability
issues. On the other hand CogTool (John et al., 2004) was identified predicting task
execution times of skilled users. The eventual aim is to gain an understanding about
the expected modality usage and the expected interaction steps during certain tasks
executed with MeMo. Next the same tasks should be simulated with CogTool to
predict the total multimodal task execution time.
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1.2 Structure of this Thesis

In Chapter 2 theoretical foundations in the fields of multimodal interaction and au-
tomated usability evaluation are laid. The two AUE tools MeMo and CogTool are
introduced. Further the research questions of this work are formulated.

Three experiments investigating the impact of modality efficiency and input per-
formance on modality choice are presented in Chapter 3. It is shown how the quan-
titative data is merged into one database.

In Chapter 4 the computational model is created. An analysis of the predictive
power of the model is conducted and an application demonstrates benefits and lim-
itations of the developed modality selection mechanism.

Chapter 5 describes the integration of the modality selection algorithm into
MeMo, and a procedure to render ACT-R models generated with CogTool multi-
modal. The integration of the modality selection algorithm is tested for both tools
and application examples for the prediction of task steps and the prediction of total
task execution time are given. The chapter closes with an comparison of the tools.

Chapter 6 summarizes the work and gives indications for future research.
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Chapter 2
Foundations

In this chapter theoretical foundations in the fields of multimodal interaction and
automatic usability evaluation are laid. Basis knowledge about the concepts and ter-
minologies of multimodal human computer interaction and the choice of modalities
is essential, not just to understand the factors influencing the modality selection, but
also to vary them effectively in quantitative studies. The first research gap studied
in this work is uncovered, namely the lack of quantitative findings regarding modal-
ity selection. Theories and models of human decision-making are usually based on
empirical evidence. Empirical studies investigating human modality selection be-
havior provide a basis for testing theories and new models. An application of such
theories as computational models can be found in the field of automated usability
evaluation. This topic is the subject of the second research gap of this work, which
is the formulation of a computational model for modality selection. The lack of such
a model prevents the automatic usability evaluation of multimodal HCI. Therefore
the third research gap of this work is that no automatic usability evaluation tools for
the simulation of multimodal HCI exist. Two tools, namely the MeMo workbench
and CogTool, are presented.

Theoretical foundations of multimodal interaction are presented in Section 2.1.
Section 2.2 provides the basics and state of the art of automated usability evaluation.
The MeMo workbench in introduced in Section 2.3 and CogTool in Section 2.4. In
Section 2.5 research questions are derived from the identified research gaps. Section
2.6 concludes with a summary of this chapter.

2.1 Multimodal Interaction

The concepts and terminology used in this work are described in Section 2.1.1. At
first the term human computer interaction is described. After the concept and the
usage of the term modality have been introduced, insights into the field of multi-
modal human computer interaction are given. Section 2.1.2 provides theories and
principles about human modality choice that has to be considered during the design

5
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of multimodal systems and during the planning of interaction experiments. Further
in Section 2.1.3 the influencing factors input performance and modality efficiency
are introduced.

2.1.1 Concepts and Terminology

2.1.1.1 Human-Computer Interaction

The interdisciplinary research field of human-computer interaction (HCI) connects
findings of computer science, psychology, work science, cognitive science, er-
gonomics, sociology and design to develop novel interfaces between users and com-
puters. HCI researchers observe the ways users exchange information with comput-
ers (Charwat, 1992). The term human computer system is used, if a person or a
group of persons are interacting with a computer to perform a specific task (Timpe
and Kolrep, 2002). Human-computer systems always have a feedback structure as
controlling or regulating actions of users influence the state and therefore the feed-
back from the computer. In human-computer systems the mutual exchange of infor-
mation takes place using a user interface. The user interface provides information
about the state of the computer in a way that is perceptible for humans and allows
to make inputs to its technical process.

Nowadays the user interface is seen as a key element in the provision of infor-
mation in human-computer systems, therefore, a good design is of particular impor-
tance (Streitz, 1988). The quality of task performance is largely determined by the
usability of the interface, which has to be evaluated under consideration of knowl-
edge and skills of the users, and limiting context-dependent factors. ISO9241-210
(2009) defines usability as

”The extent to which a product can be used by specified users to achieve specified goals
with effectiveness, efficiency and satisfaction in a specified context of use.”

Thus, usability is influenced by the following criteria:

• Effectiveness: the completeness and accuracy with which users achieve specified
goals (often measured as degree of task completion).

• Efficiency: the resources expended in relation to the accuracy and completeness
with which users achieve goals.

• Satisfaction: the subjective assessment of the participants on a validated ques-
tionnaire.

In this context effective human-computer systems require a user interface that
constantly ensures a smooth two-way exchange of information. Since the human
users are equipped with a variety of specialized interaction possibilities, the ex-
change of information can take place on different channels. The basic idea of mul-
timodal systems aims at realizing and utilizing the greatest possible range of human
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interaction possibilities for information input and output. The technical implemen-
tation of such a channel is called ”modality”. A definition of the term and the rela-
tionship between human sensory perception and technical feasibility in the design
of user interfaces are described in the following section.

2.1.1.2 Modality

Gibbon et al. (2000) state that a confusion in terminologies exists in HCI and argue
that the lack of agreement can probably be attributed to the interdisciplinary nature
of the field. Whereas in the technical sense the term modality refers to the concrete
combination of an interaction device with an interaction language (Engesser and
Claus, 1993), in a physiological sense it is understood as the possibilities of human
perception (sensors) and human action (motor). Generally, the term ”modality” can
be understood as the specific way how certain information between a sender and a
receiver is provided or exchanged. In this respect a modality refers to a communica-
tive system, which is characterized by the way in which information is encoded and
interpreted (Beuter, 2007).

Hedicke (2000) distinguishes between the so-called action modalities and per-
ception modalities. Action modalities refer to the available input forms to transmit
information from the user to the system, whereas perception modalities relate to
the transmission of information from the system to the user. To simplify some au-
thors refer perception modalities as output modalities and action modalities as input
modalities (Engesser and Claus, 1993). According to Charwat (1992) currently the
three modalities visual, auditive, and tactile (referring to the three senses sight, hear-
ing, and touch) are most relevant for HCI, whereas in physiology at least three more
senses, namely smell, vestibular, and taste, are defined.

In fact, the largest proportion of information transmission is so far using the vi-
sual modality (Norman, 1990). Usually electromagnetic radiation of different wave-
lengths are sent via monitors, displays, diodes, etc. Users perceive the visible radi-
ation as light and process the information to the characteristics brightness, color,
size, shape, orientation, distance, movement and direction (Muthig, 1999). The au-
ditory perception modality is utilized by sending information in the form of sound
waves by means of loudspeakers to the user. This information can be perceived and
processed as non-verbal sounds or sound sequences, as meaningful sounds or ver-
bal speech information. Especially in the field of mobile applications tactile stimuli
get increasingly important. Using motors or actuators certain forces are generated
to contact the user by means of vibration or pressure.

Action modalities describe how information is registered by a system and in what
way the user can interfere. In the simplest case, action modalities can be classified
analogous to perception channels of the user. In this context Hedicke (2000) distin-
guishes between an auditory, visual and haptic user interface (see Figure 2.1).

While the auditory interface for inputting information records verbal (e.g. speech
input) or non-verbal (e.g. clapping of hands) sounds from the environment via a
microphone, visual interfaces recognize information like gestures and facial expres-
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”Multimodal systems process two or more combined user input modes – such as speech,
pen, touch, manual gestures, gaze, and head and body movements – in a coordinated manner
with multimedia system output.”

The term multimodal is here related to the input modalities, while the systems
output modalities are referred to as multi-media. According to Oviatt’s definition a
system comprising at least two input modalities and one or more output modalities
for information exchange can be understood as multimodal. Wechsung et al. (2012)
define multimodal dialogue systems as:

”computer systems with which human users interact on a turn-by-turn basis, using several
different modalities for information input and/or receiving information from the system in
different modalities.”

In this thesis the term multimodal system is used as defined by Wechsung et al.
(2012), as it fits better to the understanding of input modalities and output modalities
described in Section 2.1.1.2.

In order to ensure the required high usability of the user interface, the interplay
of input and output modalities must be designed in such a way that the system can
effectively and efficiently meet its external or self-imposed objectives (Nigay et al.,
1995). Addressing this issue Nigay and Coutaz (1993) developed a design space
for multimodal systems along three dimensions. The first dimension, the level of
abstraction, defines the technical level, on which information of the different input
and output devices is processed (e.g. speech input may be processed as a signal, a
sequence of phonemes or as meaningful parsed sentences). The design space consid-
ers the two values ”Meaning” and ”No meaning”. The second dimension, the usage
of modalities, specifies the temporal availability of the modalities. The design space
considers parallel or sequential usage. The third dimension referres to the fusion of
modalities and describes if and how the information of the different modalities is
combined. The design space here considers the classes ”independent” (no fusion)
and ”combined” (fusion is implemented).

Based on these dimensions four different classes of multimodal systems can be
identified (each of the classes can have two different levels of abstraction):

• Exclusive: modalities are used sequentially and independently (fusion is not im-
plemented).

• Alternate: modalities are used sequentially. Fusion, the combination of input
information, is possible.

• Concurrent: modalities can be used in parallel, but are processed independently
(fusion is not implemented).

• Synergistic: modalities can be used in parallel. Fusion, the combination of input
information, is possible.

Together with this design space Nigay and Coutaz (1993) provide a classification
scheme that specifies the location of a system within the design space. This classi-
fication can be used for a structured comparison of different implementations of a
multimodal system through usability testing. The system used in the presented stud-
ies offers sequential and independent (no fusion) input using a touchscreen-based
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graphical user interface (touch input) or a speech-based user interface (speech in-
put). It can therefore be classified as exclusive in the design space of Nigay and
Coutaz (1993).

In order to guide the assessment and evaluation of multimodal services, Möller
et al. (2009) developed a taxonomy describing quality aspects of multimodal inter-
action. Wechsung et al. (2012) and Wechsung (2014) further elaborated the taxon-
omy. On the user side assumptions of the Multiple Resources Theory by Wickens
(2002) sketched in Section 2.1.2.3 are adopted. On the system side the taxonomy
describes several aspects related to interaction performance. One aspect is input
performance, which is particular important for this work as it is one of the explored
moderators of modality selection. According to Wechsung et al. (2012) a modalities
input performance can be quantified e.g. in terms of accuracy or error rate, as it is
common practice for speech, gesture recognizers and facial expression recognizers.
In Section 2.1.3 it is outlined how such an error rate can be calculated, as input
performance is quantified in terms of error rate in this work.

Another important aspect that is also part of the taxonomy is efficiency. In the
context of multimodal interaction, Perakakis and Potamianos (2008) define modal-
ity efficiency on the basis of the time required by that modality to complete a task.
However, in a number of studies increased speech usage could be observed, if speech
input offered a shortcut in terms of a reduced number of necessary interaction steps.
Wechsung (2014) summarized exemplary studies where speech input was preferred
for selecting an element out of a very long list (Raisamo, 1999), for entering a long
telephone number (Naumann et al., 2008), or for searching for specific titles (Nau-
mann et al., 2009, 2008; Metze et al., 2009). For entering names in a query sys-
tem, Rudnicky (1993) observed that speech was the preferred modality compared
to keyboard and a scrolling bar, whereas speech input was less efficient in terms
of task-completion time. The explanation of this opposing result might be that en-
tering a name requires only one interaction step via speech but usually more then
one interaction steps via keyboard or a scrolling bar. For these tasks speech input
is containing a shortcut in terms of interaction steps, it can therefore be assumed
that interaction steps are a more appropriate measure for modality efficiency. As
the empirical studies presented in this work contain a list browsing task, modality
efficiency is measured in interaction steps.

Known HCI principles for multimodal interaction provide useful guidance for
designing multimodal interfaces. Synergy, robustness, modularity, customizability
and consistency, including symmetric multimodality (Wahlster, 2003), are impor-
tant features of successful multimodal dialogue systems and design tools (Potami-
anos and Perakakis, 2008). Further the approach of universal accessibility aims to
produce systems that can be used by everyone in every context, permitting the user
to exercise selection and control over how they interact with the computer (Obren-
ovic et al., 2007; Oviatt, 2003). The selection is then guided by individual abilities
and preference, as well as the usage context.

As described above the selection of input modalities plays an important role in
the area of universal multimodal systems. Therefore the next section will provide
insights in the field of human decision-making.
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2.1.2 Choice of Modalities

How people make decisions and what mechanisms play a role is of interest for many
disciplines. The development and the empirical validation of decision theories has
a long tradition, especially in the economic, social, and political sciences. Since the
human factor has gained attention, insights from decision research are increasingly
taken into account in the engineering of human-computer systems (Wickens and
Hollands, 2000).

2.1.2.1 Characteristics of Decisions

Decisions describe the choice between at least two options or alternatives based
on personal preferences. Some characteristics of decisions include whether a prob-
lem with binary or multiple alternatives exists, whether it is a single or an iterative
decision-making process or whether decisions are made by an individual or by a
group (Duffy, 1993).

Decisions are always made with regard to the consequences of an option (Tver-
sky and Kahneman, 1992). Another important characteristic of decisions is the de-
gree of uncertainty about the possible consequences, since the relationship between
an option and a consequence often have a probabilistic nature. In decision-making
research decisions are called under risk if the probabilities of the possible conse-
quences are known and under uncertainty if the probabilities are not known (Junger-
mann et al., 1998).

The decision when buying a car if two types of cars are available represents,
for example, a comparably safe decision, if preliminary information on the advan-
tages and disadvantages of both vehicles has been gathered. By means of a multi-
attributive cost-benefit analysis, the individual characteristics of each car can be
separately evaluated, weighted according to personal preferences, and then summed
for the two available options. The results are total values; on that basis a decision
can be made (Wickens and Hollands, 2000).

In many decision-making situations, especially in dealing with complex, dy-
namic technical systems, however, either the consequences or the probability of
their occurrence are unknown. Decisions are ”risky” if some of the possible, but
uncertain outcomes are particularly unpleasant or associated with high costs (Tver-
sky and Kahneman, 1992). For a complex, uncertain decision problem Wickens and
Hollands (2000) give the example of a pilot deciding to continue his flight in unsafe
weather or to turn back. In this case, the consequences are probabilistic, meaning
that it is difficult to predict the impact the weather will actually have on the safety
of the flight.
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2.1.2.2 Types of Decisions

According to Wickens and Hollands (2000) three types of decisions can be distin-
guished: rational, cognitive and naturalistic decision-making.

• The rational or normative decision-making research examines how people make
decisions corresponding to an optimal framework, or a ”golden standard”, maxi-
mizing profits and minimizing losses.

• The cognitive or information-processing decision-making research considers the
extent to which errors or distortions in the decision-making process can be at-
tributed to limited human attention, working memory or selection strategies and
familiar decision routines.

• Naturalistic decision-making research is interested in the decisions in real ap-
plications, taking into account significant real world factors, such as domain-
specific expertise, time constraints, environmental dynamics, high risks and
trade-offs (Zsambok and Klein, 2014).

The rational decision-making research provides the briefly sketched multi-at-
tributive cost-benefit analysis, a rational decision-founded instrument. However, the
rational approach often turns out to have only limited validity compared to natural-
istic decision-making. For example, people do not always seek to maximize benefits
or minimize losses, and there are differences between objective and subjective val-
ues and probability estimates, leading to distortions of judgments, which can be
explained partly by certain cognitive decision routines (heuristics).

Handling the empirical research presented in this book requires the consider-
ation of human information processing, and therefore the perspective of cogni-
tive decision-making has to be considered. On the other hand, the generation of
a model for the prediction of modality usage will require the application of a ratio-
nal decision-making approach, allowing the computational processing of the inves-
tigated factors. In the following section, basics of human multimodal information
processing will be outlined. Two approaches allowing for computational processing
will be presented in Section 2.3 (MeMo) and 2.4 (CogTool).

2.1.2.3 Multimodal Information Processing

Aiming at a better understanding of multimodal HCI first of all human informa-
tion processing in general has to be considered. According to the model of human
information processing by Wickens and Hollands (2000) selective attention, diag-
nosis, and response selection can be considered as the main stages of a decision. As
a first step selective attention filters information perceived from the environment.
Only those stimuli, which are considered to be currently relevant for the situation
due to the expertise of the decision maker are forwarded for perceptual processing.
Next a diagnose, as an understanding or an assessment of the decision situation is
derived from the filtered information. Thereby information from longterm memory,
situation awareness (Endsley, 1995), and meta-cognition (Reder, 1988) are inte-
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grated to derive a general understanding about the system. In the next stage, based
on the diagnosis, the process of selection of an action in relation to the expected
consequences and the associated values of a decision (cost benefit analysis) is initi-
ated, which again triggers the action execution. According to this model it is crucial
that human beings are aware of this processing, and that processing resources are
limited, as well as susceptible for interferences. As interferences can impair the in-
formation exchange in HCI, a successful implementation of multimodal interaction
requires that interferences are impossible or at least minimized.

Fig. 2.2 Dimensions of the multiple resource theory (MRT)

In oder to identify interferences at an early stage of development and to appro-
priately coordinate modalities in a human-computer system, the multiple resource
theory (MRT) of Wickens and Hollands (2000) can be employed. The basic idea
is that human users have different resources for the simultaneous execution of cog-
nitive processes. As a consequence, in dual task situations, individual tasks can be
processed at the same time, if the two tasks use different resources. As depicted
in Figure 2.2 MRT proposes three different processing stages, two different re-
sponse codes, two different perceptual modalities and two different input codes.
Input codes are distinguished for spatial or verbal perception of the human user.
Correspondingly the response codes are distinguished as manual or verbal actions.
The processing stages split into perception and cognition, as well as responding,
whereas MRT assumes one pool of resources for the first two, and another one for
response selection and response execution. On the part of modalities the authors dis-
tinguish between auditory and visual resources. A detailed description can be found
in Wickens and Hollands (2000). In (Wechsung, 2014) the assumptions of MRT
were adopted, and further aligned for multimodal systems. Regarding the percep-
tual modalities additionally the haptic modality is suggested. Accordingly haptic



www.manaraa.com

14 2 Foundations

responses (e.g. responses including touching and moving the system, like manual
responses) are added to the response codes.

From a cognitive psychology point of view, the model of human information
processing and MRT describe how humans acquire multimodal information from a
human-computer system and how human decisions are made on the basis of present
knowledge. Thus, a decision to use a specific modality, if equivalent modalities are
offered, can be made on the basis of selectively perceived and interpreted cues. As
stated in Section 2.1.2.1 in many decision situations not all relevant information
is available or the best decision can not be determined by a retrieval of informa-
tion from long-term memory (Tversky et al., 1990). Nevertheless, humans are able
to make decisions in situations where the consequences are associated with uncer-
tainty. The strategies that are applied in such cases are called heuristics. The most
important heuristics for human decision-making are:

Anchoring and adjustment: the heuristic describes the tendency to rely too
heavily on a rough first hypothesis (the ”anchor”) when making decisions.

For input modality choice the anchoring heuristic can cause users to quickly
make a first hypothesis about the usefulness of the available modalities, and cause
them to a repeated use of a particular modality. The intentional change to another
modality could be more difficult, because people hold on to their first decision, thus
avoiding the cost of a modality change, which is causing cognitive effort.

Availability heuristic: the heuristic describes the ease with which information
can be retrieved from long-term memory – the lower the cognitive effort of an
action, the more likely the selection of this action.

This implies that users need to have initial experience with the use of input
modalities, in order to easily imagine the use of these modalities in future situa-
tions. If negative experiences occur when using a specific input modality (e.g. ASR
errors), the availability heuristic may cause that this modality is used less frequently
in the future.

Representativeness heuristic: the heuristic describes how similar a perceived el-
ement is to the abstract model stored in long-term memory.

In multimodal HCI a user can for example experience that certain system inputs
can be made faster and easier using a specific input modality. In future situations
when alternative modalities are offered, the use of this modality will appear partic-
ularly representative.

As sketched above the human decisions are guided by a number of cues. The
decision for a specific input modality is also guided by such cues. Therefore the next
section will provide insights in factors influencing the choice of input modalities.
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2.1.3 Influencing Factors of Modality Selection

Several factors influencing modality selection were already mentioned. A detailed
description of known factors should help to identify factors that are suitable for a
computational model.

2.1.3.1 Input Performance

In HCI, effectiveness is defined as ” the completeness and accuracy with which
users achieve specified goals” (ISO9241-11, 1998). In interactive systems, effec-
tiveness is essentially affected by the input performance (error-proneness) of the
interface (Card et al., 1990). Bilici et al. (2000) tested a multimodal setup, where
participants switched from speech to manual input when ASR errors arose. Suhm
et al. (1999) further found that users tend to select the less error-prone modality
after repeated usage of a multimodal system. Effects of input performance are not
well documented for graphical user interfaces. In a study of our own we observed
that participants strongly preferred the speech input if touch input errors occurred
(Schaffer and Minge, 2012). Input performance is typically quantified in terms of
error rates. The word error rate (WER) is the sum of transcription errors (word sub-
stitutions, deletions, and insertions), divided by the number of reference words with
lower scores indicating better performance (Möller et al., 2011). Actual ASR sys-
tems can widely differ in WER, reaching e.g., from 4.1 % for command and control
operations in mobile phones (Varga et al., 2002) to 46.7 % for speech-to-text tran-
scription of conference room meetings (Fiscus et al., 2008). For AUE of multimodal
systems this variance means that a wide margin of error rates has to be considered in
order to forecast modality choice. These large variances result from different under-
lying conditions such as acoustic conditions or the size of vocabulary and grammar.
Metrics comparable to WER can also be calculated for other input modes like touch
screen (Kühnel et al., 2010).

2.1.3.2 Modality Efficiency

As already mentioned in Section 2.1.1.3 this work uses the term modality effi-
ciency which is measured in interaction steps. Efficiency is defined as the effort
expended by the user in relation to the accuracy and completeness of goals achieved
(ISO9241-11, 1998). High efficiency is reached when the user fulfills a task while
expending as few resources as possible. For HCI, different metrics can be used to
assess effort, such as task completion time, monetary costs, mental effort of the
user, or the number of interaction steps required to solve the task (Bevan, 1995).
Duration-related metrics are often used to assess the efficiency of multimodal sys-
tems. Perakakis and Potamianos (2008) showed that speech input usage increases, if
it is more efficient compared to a GUI, measured in overall time spent in a modality.
On the other hand, users tend to use modalities that save additional or inconvenient
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interaction steps, even if interaction time increases (Rudnicky, 1993). Similar results
were found by Wechsung et al. (2010) and in our own studies presented in Chapter
3. .

2.1.3.3 Mental Effort

Mental effort can be described as an operator’s attentional capacity in relation to en-
vironmental demands (Kahneman, 1973). The Multiple Resource Theory (Wickens
and Hollands, 2000) introduces a model of attentional capacities to describe mental
workload. High mental workload can be caused by multiple tasks accessing identical
cognitive resources. Task fulfillment can be improved if perception and information
processing is allocated to distinct resources. Workload interferences between tasks
and allocation capabilities can be identified by means of the model. In a SIMS study,
Schaffer et al. (2011a) showed that perceived mental effort increases with increasing
task complexity for both speech and touch input. A follow-up study revealed that
participants select the modality that reduces task complexity if one of the modalities
is more efficient in terms of mental effort (Schaffer et al., 2011b). In summary, par-
ticipants were able to keep perceived mental effort constant by employing specific
modalities.

2.1.3.4 Hedonic Quality

If a product not only satisfies the task-related requirements, but also generates pos-
itive feelings in the user, it has hedonic quality (Jordan, 2002). In contrast to prag-
matic quality, which focuses on efficient and effective goal achievement, hedonic
quality asks for novel interaction techniques and communicates a desired identity
through a professional, cool, modern, or different appearance (Hassenzahl et al.,
2003). For multimodal HCI, users’ modality choice can be affected by the perceived
innovative energy or originality attributed to a modality, with innovative modalities
being used more frequently.

2.1.3.5 Personal Preferences

Personal preferences thus can have a decisive influence on individual modality us-
age profiles. It was observed that some users did not switch modalities at all but used
only either a touch or speech input (Schaffer et al., 2011a). Further user attributes
like physical impairment, attitude, character traits, education, expertise, and affini-
ties can have an influence (Bohn et al., 2005). Especially when dealing with mobile
devices, the situational context (Dey and Häkkilä, 2008) and aspects like lighting
conditions, surrounding sounds, temperature, legal requirements, and social desir-
ability also have to be considered to explain user behavior (Bernsen, 2008).
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2.1.3.6 Implication

Overall, it must be observed that all considered factors are interrelated. Because
personal preferences change dynamically, they can only be forecasted if informa-
tion about previous behavior is available. Furthermore, the influence of static user
attributes and situational context on modality choice so far has not been examined
sufficiently enough to extract computational models. Another constraint relevant to
most of the reviewed studies is that not all findings can be generalized and thus can-
not usually be compared directly. The conclusions drawn are always post-hoc expla-
nations of user studies with differing material, setup, and participants that have an
uncontrolled impact on the various factors influencing modality choice. The need for
stable experimental conditions to gain deeper insights for specific factors has moti-
vated our series of experiments. In the consequence of a rational decision-making
approach, factors related to efficiency and effectiveness, such as input performance
and modality efficiency should be taken into account to forecast average user be-
havior. The eventual goal of this work is to make the findings about the influence
factors available within AUE tools. Therefore, basics of AUE are presented in the
next Section.
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2.2 Automated Usability Evaluation

Section 2.2.1 provides a classification of AUE within Nielsens usability engineering
lifecycle and a general motivation for conducting research in this area. First insights
into the state of the art of AUE are presented in Section 2.2.2. In Section 2.2.3
developments in multimodal AUE are outlined. Approaches for the comparison of
simulation approaches are sketched in Section 2.2.4.

2.2.1 Classification and Motivation

Figure 2.3 shows Nielsens usability engineering lifecycle model with its stages anal-
ysis, design, prototyping, expert evaluation, empirical testing, iterative design, and
feedback from field (Nielsen, 1993). For each of the stages specific methods can be
applied to consider user needs during the process of developing a user interface. If
the behavior of real users while interacting with a newly designed interface is of
interest, usually at least a prototype has to be available. In the lifecycle model the
first stage where real user behavior can be observed is empirical testing, e.g. by us-
ing the think-aloud method (Lewis and Mack, 1982). In earlier stages user interface
(UI) designs can be evaluated by applying e.g. cognitive walkthroughs (Wharton
et al., 1994) or a heuristic evaluation (Nielsen, 1994). Compared to these methods
AUE can be employed in earlier phases of the lifecycle. Simulations can be per-
formed with first prototypes before the real system is available. Usability errors in
the designs can early be identified and eliminated before the first implementations
of the real user interface.

Regarding multimodality this also means that several designs integrating differ-
ent modalities can be tested against each other. Thereby the system designer can
optimize the interaction design of the planned system aiming at finding a combina-
tion of modalities maximizing efficiency and effectiveness of the interaction.

For a classical usability test usually a prototype has to be available in order to
enable the collection of interaction and behavior data of system users. The typical
procedure causes extensive effort including recruitment of test participants, as well
as planning, execution and evaluation of the study. Nonetheless so far subjective
methods are still mostly being used if a usability evaluation is performed, as most
AUE methods are still only implemented as research tools.

Ongoing research efforts are also present in the field of subjective evaluation
of the quality of MDS (Möller et al., 2011; Perakakis and Potamianos, 2008; Tu-
runen et al., 2010). Judgments on quality are usually gained from user perception.
Using questionnaires, users are asked to rate quality features of the system. The
SASSI questionnaire was developed to assess subjectively perceived quality of spo-
ken dialog systems (Hone and Graham, 2000). SASSI and other questionnaires were
adapted for MDS (Metze et al., 2009) and new questionnaires are currently being
developed (Kühnel et al., 2010; Turunen et al., 2010). Several studies have been
carried out in this field in recent years. However, studies with real test subjects are
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(Möller et al., 2006; John et al., 2004). A usability profile is generated at the end of
the AUE process.

So far no solutions for MDS have left the research phase. One issue is that it
is unclear how the simulated user should behave if more than one input modality
is offered. Concrete knowledge about users’ modality choice strategies is missing.
This knowledge is needed to build and validate both theoretical and computational
models. As only a small quantity of such data has been collected so far, this step has
only rarely been taken. AUE simulation approaches and recent developments in the
multimodal domain are discussed in the next section.

2.2.3 Developments in Automated Usability Evaluation of
Multimodal Systems

An overview of usability evaluation automation (Ivory and Hearst, 2001) summa-
rized 10 simulation approaches supporting automatic usability analysis: 9 cognitive
architectures and 1 statistical modeling technique. Morrison (2003) tested the ap-
plicability of 19 computational human behavior representations for military sim-
ulations, including 7 of the cognitive architectures discussed by Ivory and Hearst
(2001). Both papers conclude that the level of expertise required to successfully
deploy cognitive modeling is an impediment. Therefore the applicability of cogni-
tive architectures for usability evaluation is still limited due to considerable learning
time and the effort needed to employ them. Nevertheless, efforts are being made to
utilize cognitive models for AUE. Kieras et al. (1997) predicted human performance
in telephone operator tasks with models constructed in the EPIC architecture for hu-
man information processing. A simulated operator had to act in multiple modalities:
handling a telephone system and processing customer requests. However, the se-
quence of modalities was predetermined by the task and modalities could not be
selected. Anderson et al. (1997) developed the cognitive architecture ACT-R, which
is used to model various psychological aspects, including strategy selection. Schaf-
fer and Reitter (2012) produced a model, learning about the efficiency of multiple
modalities while interacting with a SIMS. However, the implemented cognitive pro-
cesses have not yet been validated. Further developments have tried to utilize cogni-
tive modeling for AUE tools by integrating simplified models for specific domains.
Distract-R allows designers to prototype new in-vehicle interfaces and to evaluate
the specifications by generating predictions of driver distraction (Salvucci, 2009).
CogTool is a user interface prototyping tool that automatically evaluates the design
with a predictive human performance model to assess total task time (John et al.,
2004; Bellamy et al., 2011). Basic modeling of SIMS is possible with CogTool and
Distract-R. However, single task steps as well as modality changes have to be spec-
ified manually by the modeler.

The statistical simulation method discussed by Ivory and Hearst (2001) is AMME
(automatic mental model evaluator), developed by Rauterberg (1996). Petri nets
(Reisig and Rozenberg, 1998) are employed to reconstruct and analyze the user’s
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problem-solving process. In addition to a system description, AMME requires log
file data in order to generate the Petri net. Although the Petri net is applicable for
subsequent simulations, reusability for other systems cannot be assumed as inter-
action parameters and system description may not be reusable. Möller et al. (2006)
presented the MeMo Workbench as a tool for semi-automated evaluation of interac-
tive systems. The approach, supporting the design process as well as the evaluation
of the design, is based on simulation with user models and system models and is
suitable for simulations of speech or GUI-based interaction including touch screen
(Engelbrecht et al., 2008). MeMo user models build upon probabilistic simulation
according to data-driven, pragmatic, or theory-driven solutions. So far the work-
bench does not support the simulation of multimodal interaction. An approach by
Schleicher and Wechsung (2012) predicts ”later” modality preference, based on in-
teraction parameters and quality ratings of the component modalities. As the method
builds on ratings of perceived quality (available only if a prototype already exists)
the applicability for simulation is limited. Although the authors report that models
fit well, they conclude that results have to be validated with larger samples.

Efforts within the computational modeling community show that a high value
is assigned to AUE. As future dialog systems will increasingly rely on multimodal
input, multiple modalities will also have to be considered during the simulation of
interactions. The utility of single modalities thereby plays a central role for SIMSs.
In engineering psychology decision makers often choose the option with the greatest
expected value (Wickens and Hollands, 2000). Cost-benefit considerations are em-
ployed in cognitive decision-making, e.g., for the selection of interactive behavior
(Gray et al., 2006) as well as in rational decision-making (Sheridan and Parasura-
man, 2000). In conclusion, both approaches rely on a rational analysis perspective,
maximizing expected utility. Predictions are based on the assumption that human
beings act similar to naive statisticians (Kahneman, 2011).

2.2.4 Comparison of Simulation Approaches

Balbo (1995) carried out a survey of usability evaluation automation, using a taxon-
omy that distinguishes among the following four approaches to automation: nonau-
tomatic, automatic capture, automatic analysis, and automatic critic. Taking up this
taxonomy Ivory and Hearst (2001) adapted the automation types to specify which
aspect of a usability evaluation method is automated. The following levels are de-
termined:

• None: no level of automation supported (i.e., evaluator performs all aspects of
the evaluation method);

• Capture: software automatically records usability data (e.g., logging interface
usage);

• Analysis: software automatically identifies potential usability problems; and
• Critic: software automates analysis and suggests improvements.
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In their survey on the state of automation in usability evaluation Ivory and Hearst
(2001) grouped usability evaluation methods along the following four dimensions:

• Method Class: describes the type of evaluation conducted at a high level (e.g.,
usability testing or simulation);

• Method Type: describes how the evaluation is conducted within a method class,
such as thinking-aloud protocol (usability testing class) or information processor
modeling (simulation class);

• Automation Type: describes the evaluation aspect that is automated (e.g., capture,
analysis, or critique); and

• Effort Level: describes the type of effort required to execute the method (e.g.,
model development or interface usage)

In their taxonomy Ivory and Hearst (2001) classify five method classes. To these
method classes different method types can be assigned. Table 2.1 mentions a few
examples.

Table 2.1 Method classes and method types as described by Ivory & Hearst (2001).

Method class Description Method type (examples)

Testing An evaluator observes users interacting
with an interface (i.e., completingtasks) to
determine usability problems.

Thinking-Aloud Protocol,
Log File Analysis

Inspection An evaluator uses a set of criteria or
heuristics to identify potential usability
problems in an interface.

Cognitive Walkthrough,
Heuristic Evaluation

Inquiry Users provide feedback on an interface via
interviews, surveys, and the like.

Interviews,
Questionnaires

Analytical Modeling An evaluator employs user and interface
models to generate usability predictions.

GOMS Analysis,
Cognitive Task Analysis

Simulation An evaluator employs user and interface
models to mimic a user interacting with an
interface and report the results of this in-
teraction (e.g., simulated activities, errors,
and other quantitative measures).

Information Proc. Modeling,
Petri Net Modeling

The method types are determined by the used evaluation methods within the
testing, inspection, inquiry, analytical modeling, and simulation classes. Referring
to the classification scheme presented in Table 2.1 the tools used in this work can
be located in the simulation class. The classification of the tools is shown in Section
5.3.

Ivory and Hearst (2001) also expanded Balbo’s automation taxonomy by an at-
tribute called effort level indicating the human effort required for method execution.
The levels are:

• Minimal Effort: does not require interface usage or modeling.
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• Model Development: requires the evaluator to develop a UI model and/or a user
model in order to employ the method.

• Informal Use: requires completion of freely chosen tasks (i.e., unconstrained use
by a user or evaluator).

• Formal Use: requires completion of specially selected tasks (i.e., constrained use
by a user or evaluator).

The authors further mention that these levels are not necessarily ordered by the
amount of effort required, since this depends on the method employed (Ivory and
Hearst, 2001).

Taken as whole the classification scheme provided by Ivory and Hearst (2001)
is useful to identify to which extent specific tools are applicable in the AUE con-
text. However, since it is difficult to present special features of individual tools in a
comparable way, these details are largely abstracted in the investigation of Ivory and
Hearst (2001). Being aware of this limitation Ivory and Hearst (2001) also include
subjective assessments for the discussed techniques using the criteria:

• Effectiveness: how well a method discovers usability problems,
• Ease of use: how easy a method is to employ,
• Ease of learning: how easy a method is to learn, and
• Applicability: how widely applicable a method is to WIMP (windows, icons,

menus, pointer) and/or web UIs other than to those originally applied.

As a part of the software development process AUE tools should smoothly integrate
into the usability engineering lifecycle. Therefore it is important that the creation of
models in the AUE process is implemented in an easy to use, and reusable manner,
and that the designs can be easily taken along into later stages of development.
This concerns the system models as well as integrated user models and task models.
Thereby it is taken into account that the modeler usually is not a programmer. This
may affect the applicability of AUE tools in practice.

Another possibility for the comparison of AUE approaches is the quality of the
predictions. If human data for the modeled task that can be compared to the simula-
tion results of the employed tools is available the prediction performance of the tools
can be assessed. Commonly used goodness of fit measures are R2 (the coefficient of
determination) and RMSE (root-mean-square error).

2.2.5 Implication

Within this work a utility-driven model for modality choice is developed. In order
to be able to create this model the lack of empirical findings regarding modality
selection has to be overcome. Once the model is there it can be utilized within ex-
isting AUE tools in order to enable simulations of multimodal interaction. The tools
to be extended should fulfill a few important requirements. The modeler should be
supported in his work with easy to use graphical tools to create, save and modify
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the necessary models. This also implies that programming should not be necessary
for the modeler. Graphical and speech input should already be supported, in order
to lower the implementation overhead during the integration of multimodality. The
first tool identified as it is fulfilling these requirements is the MeMo workbench.
In its application MeMo finds different interaction paths for a task and identifies
potential usability issues. Thereby MeMo employs a probabilistic rule based simu-
lation approach. The other tool identified is CogTool. Using CogTool the designer
can predict task execution times of skilled users. Since MeMo predicts interaction
path, and CogTool predicts task execution times, both tools differ in their fields of
application. By integrating the modality selection algorithm in both tools, the appli-
cability of the mechanism can be tested in these two areas. Furthermore, in a product
chain utilizing both tools, certain tasks could be simulated with MeMo in order to
gain an understanding about the expected modality usage and the expected interac-
tion steps. Next the same tasks could then be simulated with CogTool to predict the
total multimodal task execution time.

2.3 The MeMo Workbench

Practitioners can use the MeMo workbench in early design stages or during iterative
evaluations to reveal potential usability issues. Memo was initially used to evaluate
models of speech dialog systems (Möller et al., 2006). Jameson et al. (2007) applied
the workbench the first time for the evaluation of graphical user interfaces. The sim-
ulation of multimodal HCI is not yet possible. MeMo simulates possible interaction
between specified user, task, and system models (Engelbrecht et al., 2008). In each
step of the MeMo simulation the probabilities of the available interactions are influ-
enced by both characteristics of the user model and the system model, as well as by
rules. The user model selects one interaction according to the calculated probability
distribution.

The following Sections 2.3.1 to 2.3.5 describe the functionality and the interplay
of the most important components of the MeMo workbench. Each section focusses
on the description of the functionality of a specific component, whereas the descrip-
tion of the interplay of the components is spread over the single sections. The last
section gives fist implications for the integration of an algorithm for modality selec-
tion for the simulation of multimodal HCI. Concrete modeling examples with the
MeMo workbech are given in Section 5.1.

2.3.1 System Model

The system model is a modeled prototype of a design idea. The MeMo workbench
evaluates the system model by simulation of interaction paths. Systems are modeled
by making use of a dialog designer and a system designer. The distinction between
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these two components allows for reusability of dialogs containing the same control
elements in different system states.

Within the dialog designer MeMo so far supports modeling of graphical dialogs
and speech dialogs. Further system models can combine both types of dialogs. How-
ever, the simulation of such multimodal system models does not lead to useful re-
sults. Once a possibility for speech input is found, the speech path is chosen, other-
wise the GUI path. The actual aim of the dialog designer is to create dialogs which
are used by the user model to interact with the system. A dialog is therefore a part
of the modeled user interface. A graphical dialog includes control elements such
as buttons with attributes like label, position, size, etc. Background images can be
used in order to integrate screenshots or design sketches of graphical user inter-
faces. A detailed description of attributes can be found in Schulz (2014). Speech di-
alogs include spoken system output defining the information required by the system
(prompts) and spoken user input defining the information transferred to the system
by the user. With regard to speech recognition errors a probability for substitutions,
deletions, and insertions can be configured. The exchange of information between
the user and the system model is referred to as interaction, whereas input interac-
tions designate the transmission of information from the user to the system model
and output interactions designate the transmission of information from the system
to the user model. When performing graphical or speech dialogues information is
transmitted to the system. Information is represented through attribute-value pairs
(AVP). During the simulation information which is annotated within the system di-
alogs is compared to the user models information about the task (task knowledge)
to affect the execution probabilities of interactions.

The actual aim of the system designer is to model the system states and to connect
the modeled dialogs. A system state is composed by one or more of the designed
dialogs. In order to create the logic of the system transitions between the interactive
elements of a state (e.g buttons and speech dialogs) and other composed system
states can be defined. Thereby a finite state machine representing the system is built.
The execution of a transition can be associated with conditions and consequences.
The condition part determines which information currently has to be available in
the user knowledge, so that the transition can be executed. The consequence part
defines how the available information will be changed after the execution. By means
of information changes, the MeMo workbench can determine when a task has been
fulfilled by the user model.

2.3.2 Task Model

The task model describes the task to be solved with the system model by the user
model. The aim of the task model is to define a start state, the task knowledge and
a target state. Further an initial assignment of information can be provided. The
task itself is composed of at least one sub-task. Complex tasks can be structured
by multiple sub-tasks. Sub-tasks are used to define required information from task
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knowledge and corresponding success conditions. Information required in a task is
described as attribute-value pairs (AVP). Conditions for successful task completion
have to be determined. When all sub-tasks have been completed with success, the
main task is also successfully completed.

2.3.3 User Model

The MeMo user model is used during the simulation to interact with the system
model. The user model has attributes to describe its characteristics such as age,
language skills, physical limitations, psychological attributes, skills, and dynamic
user attributes. These attributes are utilized in rules manipulating the probabilities
for the selection of input interactions. The structure of the user model is based on
the Model Human Processor (MHP) presented by Card (1981). The MHP describes
the division of information processing in the three parts of perception, processing
and execution. In the Memo workbench, these three parts are represented by inter-
changeable modules.

The task of the perception module is to perceive information provided by the
system and to transfer the perceived information to the subsequent processing. The
default perception process is so far implemented as ”complete” perception meaning
that all information provided by the system will be fully recognized. Once an option
for speech interaction is found, speech is taken, otherwise GUI. A first prototype
of a new module for selective perception processing only elements with a particu-
lar salience is also available. However, evidence about the extent to which human
perception is mapped correctly by the new module is lacking. For the validation of
the integration of the extensions for multimodal interaction unknown side effects
of immature modules are undesirable. Therefore, the default perception module is
used in this work.

The task of the processing module is to decide on the basis of perceived infor-
mation and the defined task knowledge, which interaction should be applied by the
user model on the system model. To accomplish this, the information on the inter-
action objects transferred from the perception module are compared with the task
knowledge of the user model. As a result of this comparison, interaction objects fit-
ting well with the user knowledge are assigned with higher probabilities. After this
initial assignment of interaction probabilities the rule engine is called, which further
changes the probabilities based on the defined rules.

The basic idea of the rules used in MeMo is to capture typical behaviors of mem-
bers of specific user groups in specific situations. People with bad eyesight, for
example, represent a user group. Rules further take into account the attributes of the
interaction object. For a button it can for example be specified that its font size is
small. The rules have an ”if then structure” with a condition and a consequence part.
In the condition part attributes of user groups and interaction objects are specified,
whereas the consequence part defines how the interaction probability of the inter-
action object will be modified. An example for a rule is therefore: if the user has a
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bad vision and the font size of a button is small, then the probability of pressing the
button is reduced. Once the rules have affected the probabilities of all available in-
teractions, one interaction object is selected according to the probability distribution
and the decision is passed to the execution module. Rules have an XML structure
and are stored in a rules folder within the workbench.

The task of the execution module is to apply the chosen interaction on the sys-
tem model. The execution process is implemented as ”correct”, meaning that the
interaction object that was selected, is performed in the right way.

2.3.4 Simulation

Before the simulation can be started, a number of iterations, at least one user group
and the tasks to be simulated have to be specified by the modeler. The system model
can be represented as a graph consisting of transitions and system states. After the
simulation was started at first optimal solution paths through this system graph are
calculated to ensure that solutions based on the existing knowledge of the users
model exist. Only if solutions are found, the simulation is started. The optimal path
is further used to determine during the simulation, if the simulated user leaves this
optimal path. The path can then be goal-driven, if the task goal can still be ac-
complished, or unrecoverable, if the task goal can not be reached anymore. If an
interaction ends up in an unrecoverable state, the iteration is aborted, and the next
iteration is triggered.

During the simulation the user model interacts with the system model. The fol-
lowing steps are executed:

1. Initialization: the user model gets the knowledge for the first sub task; infor-
mation values and start state of the system model can be set.

2. Perception: the user model perceives (all) possible interaction options in the
user interface.

3. Processing: information is evaluated, rules are applied, and an interaction is
selected.

4. Execution: the selected interaction is performed.
5. System reaction: the system model checks whether a transition can be carried

out, the consequences of the transition are applied, and the values of information
can be changed.

6. Task check: examination if the goal of the sub task is successfully reached.

• if not, got to 1 with existing initialization.
• if yes, go to the next sub task and perform the steps with new initialization. If

no further sub task exists the whole task is successfully finished.

This process can be carried out iteratively, so that a task can be simulated several
times in succession, resulting in log data from many simulated users.
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2.3.5 Reporting and Features

In each step of the simulation, the applied rules, the resulting probabilities and the
performed interactions are recorded. A report view allows for browsing through the
associated data. For each task trial of the user model a path through the system state
machine is displayed. The number of needed interaction steps, the correctness of
the task solution, and the execution times for single task steps as well as for the
whole task can be viewed. Based on this information the developer can understand,
why the user model deviated from the optimal path. From that, conclusions on the
necessary changes in the design of the user interface can be drawn. A summary of
the simulation can be exported as a PDF document for the documentation of the
results. For further processing in statistical programs a more detailed log file can be
output in CSV format.

2.3.6 Implication

With MeMo practitioners can create models of user interfaces and of tasks to be
solved by means of these interfaces. Annotated interface attributes, and the AVPs
modeling information as well as the task knowledge are effective factors influenc-
ing the simulation. With MeMo multimodal systems can be modeled, but human
behavior when selecting input modalities in multimodal interaction can not be sim-
ulated correctly because a corresponding mechanism is missing. MeMo choses the
speech path through the system graph once a possibility for speech input is found.
Only if no possibility for speech input is found a GUI path is selected. This prin-
ciple preference for speech input in case of multimodal system models must be
overcome. The module-based approach of the MeMo workbench and in particular
the subdivision of the user model into several modules allow for the exchange and
change of individual modules. An available algorithm for modality selection could
thereby be integrated. In order to enable the integration, it must be ensured that
input data of the algorithm are available when needed. The input data in this case
include concrete values for input performance and modality efficiency of the differ-
ent modalities. The input performance of speech input is already considered within
MeMo and should be easy to exploit. However, for other modalities error rates are
not foreseen. Modality efficiency as described in Section 2.1.1.3 is measured in
terms of interaction steps. This parameter is so far not used during the simulation.
In each interaction step it is necessary to enable the user model to get information
about the number of interaction steps to be expected for each modality. This infor-
mation could be derived if the current state and the end state of the current sub goal
are known and if the single path steps on the optimal path between these states can
be calculated in advance. The extensions made to MeMo, as we’ll as application
examples showing the power and the effort of the approach can be found in Section
5.1. In the next section CogTool is introduced.
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2.4 CogTool

The details shown in this section are mostly taken from the CogTool user guide
(John, 2012). CogTool is a user interface prototyping tool that can produce quan-
titative predictions of how users will behave when the prototype is ultimately im-
plemented. Thus, CogTool provides a way to explore different UI ideas, compare
them, and narrow down the options to a handful of designs to be empirically tested
with users. Using CogTool the task execution time for skilled users of a system can
reliably be predicted (John, et. al., 2004; Luo & John, B., 2005). CogTool employs
the ACT-R cognitive architecture. It should be noted that the concepts underlying
CogTool are partly similar to those already described in the previous section about
MeMo. However, the naming is different in CogTool. In this section the CogTool
naming is used.

The Sections 2.4.1 to 2.4.5 describe how to create the necessary models, and
sketches how the predictions of underlying human performance model are made
and how they are reported. Concrete modeling examples with CogTool are given in
Section 5.2.

2.4.1 Prototyping an Interface

The prototyping of an interface is explained in detail in the CogTool user guide
(John, 2012). Here only the key elements of the underlying prototyping concept are
described in adapted excerpts of the user guide.

In CogTool a prototype of a system is represented as a ”design”. The design
represents a finite state machine that consists of frames and transitions between
those frames. The frames contain devices for user input. Starting from a frame a
transition defines the move to another frame if a particular input device is used.
A device is a representation of the hardware associated with the design. CogTool
includes the input devices keyboard, mouse, touchscreen and microphone, as well
as the output devices display and speaker. CogTool assumes that every design has
a display. For the graphical input devices several widgets, such as buttons, check
boxes, hierarchical menus, etc. exist. It is not possible to deselect the display as an
output device. If a device with no display should be modeled (e.g., a speech dialog
system), this can be handled by all frames being empty. Speech input from a user is
represented by a microphone that can be included in the design. When modeling a
transition for speech input, the words for this particular utterance have to be defined.

Using CogTool to make predictions of task execution time for skilled users, it
is not necessary to integrate an input option for every interactive element in the
design. The underlying human performance model only needs the input options that
are actually used in the tasks under investigation. With regard to multimodal HCI,
multimodal designs are in principle possible. Between two frames one transition
from a graphical widget and another transition from a microphone can exist.
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2.4.2 Task Demonstration

The demonstration of tasks is explained in detail in the CogTool user guide (John,
2012). Here the key aspects of the task demonstration are described in adapted ex-
cerpts of the user guide.

As soon as a design including the frames and transitions that are necessary for
conducting a specific task is created the exact interaction steps of this task have
to be demonstrated in the UI mockup. Before the actual task demonstration can
begin a start frame has to be selected. During the presentation the modeled input
options of the graphical user interface and other input devices like the microphone
are used. The modeler can interact with the frames in a way similar how a user would
interact with the actual device. Multimodal task demonstrations are also possible. If
for example one transition from a graphical widget and another transition from a
microphone exist and the task can be solved via both transitions the modeler can
pick one of these transitions. In CogTool each selection of a transition is performed
by the modeler, and if different input devices within one state include transitions to
the same subsequent state the modeler also has to select the desired device.

CogTool automatically adds steps to the demonstration in order to create cogni-
tively plausible scripts. Most of these steps are ”think” steps, placed in accordance
to prior research that has studied where people pause when using computers (e.g.,
Card, Moran, and Newell, 1980; Lane, et. al., 1993). The rules for placing ”think”
steps can be looked up in the CogTool user guide. It is further possible to remove or
edit the duration of ”think” steps placed by CogTool and to add additional ”think”
steps with a configurable duration to the demonstration. In the user guide it is dis-
couraged to edit or add ”think” steps unless one has empirical evidence applicable
to the design to support the change. In order to get information from non-interactive
parts of the graphical user interface additional steps to ”look at” particular widgets
can be added. This can for example be used to read a dialog box in the design.

2.4.3 Human Performance Model

CogTool’s quantitative predictions are based on the cognitive architecture ACT-R
(Anderson and Lebiere,1998). ACT-R is used to simulate the cognitive, perceptual
and motor behavior of humans interacting with the prototype to accomplish tasks the
UI designer has defined (John, 2012). In ACT-R knowledge about how to perform
a specific interaction is represented by productions. CogTool converts the recorded
interaction steps into a sequence of such ACT-R productions. The generated code is
executed in the ACT-R Runtime Environment. The simulation calculates the time of
an expert user for the execution of the steps. The model that CogTool creates is based
on the Keystroke-Level Model (KLM; Card et al., 1980). CogTool’s predictions of
human performance use Fitts’s Law to estimate movement time but since Fits’s Law
was originally determined using tapping with a stylus, there is no additional time
added for the touch screen input. CogTool’s predictions for speech input use ACT-
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R’s speaking model. That model uses 50 ms per character as an estimate for how
long it takes the user to say words into the microphone. While demonstrating the
task CogTool automatically inserts mental operators (”think” steps) into the KLM.

2.4.4 Computing a Prediction

The computing of predictions is explained in detail in the CogTool user guide (John,
2012). Here the key aspects of the computing are described in adapted excerpts of
the user guide.

CogTool transforms the demonstrated task into a script, which is translated into
cognitively valid code of the cognitive architecture ACT-R. This code is run in ACT-
R and produces the prediction of execution time. Cognitively valid means for exam-
ple that validated models for movements of fingers on a touch screen, and a speak-
ing model as well as a hearing model are being utilized to compute the prediction
of performance. Once creating and editing a script is finished, the computing of
a prediction works straightforward by pressing button. The result is the calculated
prediction for the execution time of a skilled user.

2.4.5 Reporting

In the visualization window of CogTool details of the cognitive simulation can be
viewed and different designs as well as tasks can be compared to each other on a
timeline. The activities on the single ACT-R modules and the simulation traces can
be viewed. Based on this information the practitioner gains insights about the effi-
ciency of the designs. It is easy to recognize how long each interaction step takes,
and where improvements of the design may be made. In this way one can also de-
cide for a specific design. For documentation the simulation results (expert time
predictions) of multiple designs and the script generated by CogTool can be ex-
ported in CSV format. Further the generated ACT-R model file can be exported as
lisp programming code. This code can also be run directly in ACT-R. Also includ-
ing information about the involved interaction steps, the trace can be exported in
a text document. One can also export prototypes to HTML, to share designs with
colleagues or to perform quick user tests.

2.4.6 Implications

With CogTool practitioners can create designs of user interfaces and demonstrate
tasks using the designs. The results of the predictions are execution times of skilled
users for the tasks demonstrated on the UI mockup.
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As depicted above multimodal designs and task demonstrations are possible with
CogTool. CogTool can compute performance predictions with mixed modality us-
age. If differences between tasks including divers sequential combinations of input
modalities are to be explored, alternative task demonstrations have to be recorded for
each available modality combination of interest. A mechanism automatically gen-
erating these combinations would allow a comprehensive examination of different
task solutions, and save modeling effort and time.

While demonstrating a task in CogTool, frames including a touch screen and a
speech transition, both allowing to solve the task, could for example integrate a ”se-
lect modality” step (similar to the ”think” or ”look at” steps) which could be part of
the CogTool script. After the ”select modality” step the modeler would demonstrate
both the touch screen and the speech solution, resulting in two CogTool sub scripts,
which are recombined in a later frame (at the latest in the last frame). In this way
the input options for multimodal interaction could be transferred to the underlying
human performance model basing its calculations on the user inputs that are actually
performed in the tasks under investigation. The modality selection mechanism then
has to be integrated on the part of the human performance model.

In the core, CogTool uses ACT-R as a human performance model to perform sim-
ulations. In this respect one application of the CogTool functionalities is, that it can
be used as graphical user interface for generating ACT-R simulations. An extension
of CogTool by functions for examining modality selection in multimodal HCI, thus
involves adaptations on both the CogTool UI part and the ACT-R simulation part.
Planning an integration of modality selection into CogTool, it makes sense to firstly
test the feasibility and validity of a multimodal ACT-R simulation. The multimodal
ACT-R simulation should be orientated on the structure of the ACT-R code that is
generated from CogTool scripts. Further correctness of input data of the modality
selection algorithm has to be ensured. The procedure to simulate multimodal HCI
based on CogTool generated ACT-R models, as well as application examples show-
ing the power and the effort of the approach can be found in Section 5.2. In the next
section the research questions of this work are formulated.

2.5 Research Questions

The motivation of this work is to examine the interdependencies of the factors
modality efficiency and input performance that determine modality choice, for the
domain of multimodal mobile HCI, and to build models that are able to predict
modality usage by means of these factors. The selected task presented in Chapter
3 is from the domain of ”list browsing”, which is of importance for a number of
systems, especially for smart phone applications where screen size is limited. Since
not all information can be displayed at a time, users have to browse through lists to
find desired items.

Some questions that may arise in certain contexts of this work will not be an-
swered, as they exceed the scope of this work. For the simulation of errors for ex-
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ample no additional implementations are made in order to limit the scope of this
work. With MeMo ASR errors but not errors of the graphical user interface can be
simulated, and with CogTool no errors of input devices can be simulated at all. The
simulation of errors can be complicated, since different errors may result in different
system states. The realistic simulation of errors is therefore an own field of research.

2.5.1 Quantification of Modality Efficiency and Input Performance

The decision mechanisms of human beings regarding modality selection are so far
not fully understood. The available theories and research findings about factors in-
fluencing modality selection provide starting points for experimental studies. In or-
der to derive computational models of modality selection comparable data has to
be gathered in unified investigations. This points out to the first research gap that
is studied in this work: the lack of empirical findings regarding modality selection.
Therefore the following research question RQ1 is formulated:

• RQ1: Can significant effects of modality efficiency and input performance on the
selection of input modalities in multimodal HCI be disclosed by unified experi-
mental investigations?

According to the existing theories for the choice of modalities experiments in-
vestigating relevant influence factors have to be designed in a way, that the neces-
sary information for modality selection is available for the participants. Accordingly
strategies of human decision-making like heuristics have to be considered in the de-
sign of experiments. In order to answer RQ1 three interaction experiments with a
SIMS are presented in Chapter 3, testing the following hypotheses regarding modal-
ity selection:

• H1: If the input performance of a specific modality decreases, the usage of this
modality decreases as well.

• H2: If the modality efficiency of the touch screen interface decreases, the usage
of speech input increases.

2.5.2 Computability of Modality Selection

Computational models for modality selection are so far missing completely. There-
fore the derivation of such a model for modality selection is the aim of the second
research gap. The state of the art in AUE and the developments in AUE of multi-
modal systems presented in this chapter implicate that cost benefit approaches em-
ploying utility functions could be applied for model creation. Therefore the second
research question RQ2 is formulated as follows:
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• RQ2: Can a utility-driven computational model of modality selection be formed
based on empirical data?

In order to answer RQ2, in Chapter 4 models are derived and the predictive qual-
ity of the tested models is judged with goodness of fit measures (R2 and RMSE), as
well as with data interpolation and extrapolation. To show the general applicability
for simulation, a prototypical implementation of the prediction algorithm will be
outlined.

2.5.3 Application for Automated Usability Evaluation

AUE tools integrating automated modality selection are so far missing. The possible
application of the built model depends on the compatibility with existing simulation
tools. If automated usability evaluation of multimodal systems should be enabled
ways to integrate the model have to be found. The third research question RQ3 is
therefore:

• RQ3: Can the compiled model for modality selection be utilized for the practical
application in the field of automated usability evaluation?

RQ3 will be answered in Chapter 5 by the application of the modality selection
algorithm within the two AUE tools MeMo and CogTool. Regarding MeMo a full
integration of the model could be performed. For CogTool a multimodal procedure
for simulating modality selection based on adapted ACT-R models generated by
CogTool is developed.

2.6 Chapter Summary

In this chapter basic principles and recent developments of multimodal human com-
puter interaction have been described. The selection of input modalities in multi-
modal HCI involves a decision process of the user. Therefore also basic principles
of human decision-making have been discussed. It was argued that existing theories
of multimodal information processing and human strategies for decision-making
have to be considered during the planning of experiments investigating modality
selection. In order to support the creation of a utility-driven model the influencing
factors of modality selection assessed during such experiments should be related to
efficiency and effectiveness. The factors input performance and modality efficiency
were identified as suitable. According to recent developments in the filed of mul-
timodal AUE the tools MeMo and CogTool have been identified as candidates for
testing the application of the modality selection algorithm to be developed. For both
tools first starting points for the utilization of the modality selection algorithm were
identified. Lastly the research questions of this work were formulated.
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In the next chapter three interaction experiments assessing modality efficiency
and input performance in several levels are presented.
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Chapter 3
Effects of Modality Efficiency and Input
Performance on Modality Selection

In this chapter a series of three experiments will be described. The overall goal of
all experiments is to gather comparable data on users’ modality choice behavior.
Therefore all participants have to conduct the same tasks with one particular system
in controlled laboratory setups. Modality efficiency is systematically varied in six
levels within each experiment. Throughout the experiments six conditions of input
performance are differentiated.

Section 3.1 describes the general experimental setup for all experiments. The first
experiment depicted in Section 3.2 aims at the mere effect of modality efficiency.
It comprises the baseline condition for input performance [T00, S00] with touch
screen T and speech input S having both no errors. Perfect input performance for
both modalities was simulated using Wizard of Oz speech recognition (Schaffer
and Reitter, 2012). In Section 3.3 the second experiment is described, targeting the
effect of input performance, ASR error rates of 10% ([T00, S10]) and 30% ([T00,
S30]) were simulated (Schaffer et al., 2011a). In the third experiment depicted in
Section 3.4, ASR errors of 20% ([T00, S20]), as well as two further conditions were
tested: [T20, S00] touch input producing errors at a rate of 20% while ASR errors
amounted to 0%, and [T20, S20] with touch and speech input, both comprising error
rates of 20% (Schaffer and Minge, 2012).

3.1 Experimental Setup

All experiments followed roughly the same experimental setup. Specifically the
used system, the task and the general procedure were extensively harmonized.
Adaptions to the general procedure and the simulation of input performance are ex-
plained within the respective subsections of the single experiments. Further details
of the experiments can be looked up in Appendix A.

37
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assumed that ASR worked with an open microphone built in the smartphone device.
It was not necessary to push a button to enter a speech command. The language was
German for both the touch screen and speech-based interface.

3.1.1.2 Benefit of Speech Usage

To make a request using the touch input, the user had to click on a category and
then manually switch through layers to find the desired item. In contrast to this,
speech interaction offered a shortcut. Using speech, the user could not only make
exactly the same inputs as with the touch screen but also choose an item from any
list screen without the need to switch through layers by simply pronouncing the
name of the desired item. For example, one was able to select ’Hamburg’ from the
first layer, while it would have taken him four interaction steps to select it using
the touch screen. The benefit of speech usage Bspeech thereby can be calculated as
the difference between necessary touch screen interaction steps IStouch and speech
interaction steps ISspeech. 1

Bspeech = IStouch− ISspeech (3.1)

3.1.1.3 Consideration of Heuristics

The participants have to conduct three rehearsal trials: one using touch screen input
only, one using speech input only, and one where modalities can be selected as de-
sired in each interaction step. While performing the tasks the participants experience
the presence or absence of errors dependent on the condition of input performance.
The rehearsal trials are structured in such a way that different levels of modality
efficiency can be experienced. The error rates of input modalities and the modality
efficiency may have effect on the perceived usefulness of the modality. It is expected
that the participants perform an internal cost-benefit estimation in order to weight up
the usefulness of modalities. In this way an anchoring with respect to the usefulness
of the modalities is made.

By performing the rehearsal trials also the availability of a modality may be af-
fected, as the users gain initial experience with the use of the input modalities. Es-
pecially for participants using speech input for the first time it may become easier to
imagine the use of this modality during the experiments. Negative experiences like

1 For the RBA ISspeech amounts to a constant 1, as speech input is always directly possible.
However ISspeech can amount to other values in different systems. Alternatively, using an OKS
setup for the actual system (compare Section 1.1), ISspeech could amount to a constant 2, due to a
necessary ASR activation command. If no speech shortcuts were implemented in the actual system
and a speech command would still be implemented for each possible touch input ISspeech would
equal to IStouch. For other systems (like some navigation systems), where speech input does not
directly match touch input, varying values of ISspeech are possible. As our aim is to create a model
that can in principle cover all these kinds of systems, ISspeech will be handled as variable in the
model construction.
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ASR or touch screen errors may also cause that an error-prone modality is used less
frequently.

A cue about modality efficiency can also be derived from the graphical user in-
terface: within the list screens the actual number of a sub list and the total number
of sub lists is shown in the upper right corner (comp. Figure 3.1.1.1). As the list
items are ordered alphanumerically the number of touch screen inputs to perform
is easy to estimate, and easy to compare to speech input. For users experiencing
speech shortcuts the use of speech may appear particularly representative for tasks
with high modality efficiency of speech input.

3.1.2 Task

In all experiments the task was to perform predefined database requests using the
RBA. Each request comprised four list-browsing sub tasks, namely the choice of a
city, a culinary category, a time, and a number of persons. For example, participants
had to request for ”a Chinese restaurant in Berlin at 8 pm for 12 persons”. The exact
steps and system states for this task example are described in Table 3.1. At first a list
had to be selected at the home screen. In doing so a user can choose touch screen
or speech input at any time. The participants were instructed that the written labels
in the GUI have to be used as speech commands. After the selection of a list the
first layer was presented. The 24 items within a list are ordered alphanumerically
on 6 layers, whereas each layer presented 4 list items in the GUI. Figure 3.1 depicts
the choice of the city ’Berlin’ as an example. The participants were instructed that
touch screen or speech input could be used to select an item. Using speech input
all list items from all six layers of a list are already recognized in the first layer,
while touch screen input only allows selecting items that are directly visible. Users
preferring touch screen input therefore have to browse through the list by pressing
the arrow in the downright corner, until the desired list item is displayed. Due to
the alphanumeric order, the participants should be able to anticipate the layer of a
distinct item.

3.1.3 General Procedure

All experiments followed roughly the same procedure. Adaptions can be found in
the individual subsections. However the general procedure depicted here was uni-
form for all experiments. After welcoming the participants, demographic data was
gathered in a short questionnaire. Then, the participants were given an introduction,
explaining the usage of the system with both the touch screen and speech input.
To control whether participants understood the instruction and were able to use the
system with both modalities, three training trials had to be done: one using touch
input only, one using speech input only, and one with a free choice of modality.
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Table 3.1 Task example for ’Look for a Chinese restaurant in Berlin at 8 pm for 12 persons’.
From top to bottom the column System state indicates the states involved during task processing.
Sub goals are marked with SG. Bspeech is calculated as described in Subsection 2.1.2. The columns
’touch button’ and ’speech utterance’ explain the user input interaction.

System state Bspeech touch button IStouch speech utterance ISspeech

Home 0 Press “select City” 1 Say “select city” 1
City list 1 0 Press “Berlin” 1 Say “Berlin” 1
Home (SG1) 0 Press “select Category” 1 Say “select category” 1
Category list 1 1 Press “right arrow” 2 Say “Chinese” 1
Category list 2 0 Press “Chinese” 1 - ” - 1
Home (SG2) 0 Press “select Persons” 1 Say “select persons” 1
Persons list 1 3 Press “right arrow” 4 Say “twelve” 1
Persons list 2 2 Press “right arrow” 3 - ” - 1
Persons list 3 3 Press “right arrow” 2 - ” - 1
Persons list 4 0 Press “12 persons” 1 - ” - 1
Home (SG3) 0 Press “select time” 1 Say “select time” 1
Time list 1 2 Press “right arrow” 3 Say “eight” 1
Time list 2 1 Press “right arrow” 2 - ” - 1
Time list 3 0 Press “8 pm” 1 - ” - 1
Home (SG4) 0 Press “Search Restaurant” 1 Say “search restaurant” 1

After this training, the target trials started. Adaptions regarding the simulation of

errors are described in the individual subsections. Participants were informed about

the Wizard-of-Oz design only after all target trials were finished. Depending on the

specific conditions of the experiments, input performance could be impaired. How-

ever the participants were not informed about the possible occurrence of errors be-

forehand. As the measure of modality efficiency, Bspeech was systematically varied

between 6 levels (0-5 interaction steps) within the individual trials. Modality usage

data was collected using log files. This experimental setup enabled to measure the

effects of modality efficiency and input performance on modality usage by means of

two independent variance analyses. During the experiment, also data about the per-

ceived mental effort and product quality was gathered. This data will not be further

examined here (see Schaffer and Reitter (2012), Schaffer et al. (2011a) and Schaffer

and Minge (2012) for more information). All experiments took roughly 45 minutes

to one hour and were remunerated with e 10.

3.2 The Influence of Modality Efficiency

This experiment investigates the influence of modality efficiency on modality se-

lection. Shortcuts of the speech interface lead to a higher modality efficiency of

speech compared to touch screen. Here only results regarding modality selection

are reported. Further results can be looked up in Schaffer and Reitter (2012).
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3.2.1 Adapted Procedure

In the first experiment 16 German-speaking participants (8 females) tested the RBA.
The age ranged from 22 to 31 years (M = 26, SD = 2.95). The course of the exper-
iment corresponded to the general procedure described in Section 3.1.3. The condi-
tion [T00, S00] was tested. Since speech input and touch input were both working
perfectly, neither producing any errors. For each of the 15 trials (including 3 training
trials), an instructor was presenting the current task on a paper.

3.2.2 Results

Tests on distribution form and the homogeneity of variance can be looked up in
Appendix A.15. The means and standard deviations of speech usage are reported in
Table 3.2. A one-factorial repeated measures ANOVA showed a highly significant
effect of Bspeech on the usage of speech (F(2.27,33.97) = 27.503; p1−tailed < .001;
η2

p = .647). The results confirm the hypothesis H2 that modality efficiency in terms
of benefit with reference to interaction steps is moderating users’ modality choice.
Speech usage increases with increasing efficiency of the speech modality.

Table 3.2 Experiment 1. Means M and standard deviations SD of speech usage in dependence of
Bspeech.

Condition Bspeech 0 1 2 3 4 5

[T00, S00] M [%] 0.31 0.73 0.83 0.90 0.94 0.96
SD [%] 0.36 0.26 0.22 0.18 0.09 0.08

3.2.3 Discussion

The results confirm the hypothesis H2 that modality selection is influenced by the
efficiency of the modality. If desired items are to be found in a deep-set layer of a
list, speech usage is preferred over touch input due to shortcuts only available by
speech. Apart from that users tend to use touch if the benefit of speech equals zero.
The preference of touch input in this case indicates that other influencing factors
come into play if only one interaction step is necessary for both modalities. As
speech still can be considered as a novel input modality the familiarity of touch
interaction might be one important factor for modality selection if speech does not
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offer a shortcut. However the interaction behavior could change if speech input is
established in more interfaces and thus gets more familiar.

Another explanation could be that touch input was more efficient in terms of time.
The average duration of one interaction step was longer for speech input. Further
cognitive workload of speech processing compared to touch usage is assumed to be
higher (McCracken and Aldrich, 1984). The factors efficiency in terms of time and
mental effort are known influence factors of modality selection. Effects of modality
efficiency and input performance on mental effort are reported in Schaffer et al.
(2011b), Schaffer et al. (2011a), and Schaffer and Minge (2012). Future research
will be needed in oder to consider interaction time related measures and mental
effort in computational models for modality selection.

3.3 The Influence of Input Performance

This experiment investigates the influence of speech input performance of on modal-
ity selection. Modality efficiency is varied in the same way as in experiment 1. Here
only results regarding modality selection are reported. Further results can be looked
up in Schaffer et al. (2011a).

3.3.1 Adapted Procedure

In the second experiment, 33 German-speaking participants were tested. Four par-
ticipants had to be excluded as three did not follow the instructions and one ex-
perienced a severe malfunction of the system. The remaining sample consisted of
11 females and 18 males, with a mean age of 25 years (SD = 3.7). The course of
the experiment corresponded to the general procedure described in Section 3.1.3.
Error rates were generated randomly, varying between 0 and 40 percent. Thus the
error rate was individual and varied between participants. The participants were
clustered in two groups post hoc. The first group (constituting the condition [T00,
S10]), consisted of 17 subjects who experienced error rates of approximately 10%
(er = 0−20%, M = 9.13%, SD = 6.0%). The second group (constituting the condi-
tion [T00, S30]) contained 12 subjects who experienced error rates of approximately
30% (er = 21− 40%, M = 30.23%, SD = 4.28%). ASR errors were randomly in-
serted and could occur in each step. In terms of the error probability corresponding
to the individual error rate, it was possible that errors were induced directly in suc-
cession. After an error the home screen was presented with no result and the textual
message ’I did not understand’, and the search within the list screen had to be started
again. The 3 training trials and 15 target trials per user took place in the same ex-
perimental setup as in the first experiment.
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3.3.2 Results

Tests on distribution form and the homogeneity of variance can be looked up in
Appendix A.15. The means and standard deviations of speech usage are reported
in Table 3.3. Corresponding with the first experiment a one factorial repeated mea-
sures ANOVA showed a highly significant effect of Bspeech on the usage of speech
(F(2.47,65.79) = 74.222; p1−tailed < .001; η2

p = .733). Further significant dif-
ferences between the two error conditions could be observed (F(1,27) = 6.94;
p < .007; η2

p = .204). The results confirmed the hypothesis H1 that input perfor-
mance moderates users’ modality choice. Speech usage decreases with increasing
ASR error rate. Further H2 is confirmed again. A significant interaction between
both factors could not be observed.

Table 3.3 Experiment 2. Means M and standard deviations SD of speech usage in dependence of
Bspeech.

Condition Bspeech 0 1 2 3 4 5

[T 00,S10] M [%] 0.35 0.75 0.92 0.93 0.90 0.93
SD [%] 0.32 0.30 0.12 0.16 0.17 0.19

[T 00,S30] M [%] 0.17 0.66 0.70 0.81 0.77 0.84
SD [%] 0.18 0.26 0.25 0.11 0.22 0.18

3.3.3 Discussion

The results confirm the findings of experiment 1 indicating that modality selection
is influenced by modality efficiency. If desired items are to be found in a deep-set
layer of a list, speech is preferred over touch screen due to shortcuts of speech input.

The results of experiment 2 further show that speech as an input modality is
less used if the probability of ASR errors increases. Users adapt their interaction
behavior to the accuracy of a system when they decide which modality they use next.
As the accuracy of future ASR modules might increase the influence of this factor
might decrease or even fade away. But interaction designers of presently developed
systems have to be aware of the reliability of their input modules.

If a system is affected by ASR errors on the one hand and contains speech short-
cuts on the other hand, a user has to distinguish which modality is more capable.
The threshold at which speech becomes more efficient shifts with increasing error
rate and the advantage of speech shortcuts even may completely vanish if the error
rate is too high.



www.manaraa.com

3.4 Combined Effects of Input Performance of Touch Screen and Speech 45

The study further reveales that users seem to be aware of the changing character-
istics of certain factors and try to weigh up the best decision.

3.4 Combined Effects of Input Performance of Touch Screen and
Speech

This experiment investigates combined effects of touch and speech input perfor-
mance on modality selection. Modality efficiency is varied in the same way as in
the experiments 1 and 2. Here only results regarding modality selection are reported.
Further results can be looked up in Schaffer and Minge (2012).

3.4.1 Adapted Procedure

Finally, in the third experiment, 48 German-speaking subjects (24 m, 24 f) partic-
ipated. The mean age was 24.2 years (SD = 3.73). The course of the experiment
corresponded to the general procedure described in Section 3.1.3. Unlike in exper-
iment 2 (where ASR errors were simulated randomly) ASR errors were simulated
with fixed error rates of 0% or 20%. Touch screen errors were integrated by block-
ing one in five input attempts on the touch screen for 1.4 seconds, the average time
needed to recover after an ASR error. The blocking mechanism was implemented
so that it counted across individual tasks. Therefore touch screen errors could also
occur in the first step when using touch input as off the second task. Due to speech
input involvement, touch screen errors were further distributed over the interaction
steps. At the end of the experiment, each subject was asked about the perceived au-
thenticity of errors. None of the participants noticed that errors were simulated, and
none stated that they had recognized the errors as artificial. The participants were
evenly distributed to the following four error conditions:

1. [T00, S00] touch and speech input both working perfectly (as in the first experi-
ment)

2. [T20, S00] 20% touch screen error rate and speech input working perfectly
3. [T00, S20] touch input working perfectly and 20% ASR error rate
4. [T20, S20] 20% touch screen error rate and 20% ASR error rate

A total of 3 training trials and 12 target trials were conducted in a closed acoustic
booth. The instructor was sitting outside and the subject was alone during the trials.
The tasks were automatically presented on a screen when the previous task was
accomplished.
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3.4.2 Results

Tests on distribution form and the homogeneity of variance can be looked up in Ap-
pendix A.15. The means and standard deviations of speech usage are reported in Ta-
ble 3.4. Consistent with the first and the second experiment, a one factorial repeated
measures ANOVA showed a highly significant effect of Bspeech on the usage of
speech (F(2.96,130.32) = 16.72, p < .001; η2

p = .275). Further a highly significant
effect of the error condition on speech usage could be observed (F(3,44) = 4.75,
p = .006, η2

p = .25). Post-Hoc Scheffé tests showed significant differences between
the conditions [T00, S00] and [T20, S00], as well as between [T00, S00] and [T20,
S20]. The results confirmed that previously unconsidered touch screen errors also
affect modality choice. Speech usage increases if touch screen errors occur. The
study further revealed that touch screen errors are punished harder than ASR er-
rors, as only marginal differences between the [T20, S00] and [T20, S20] condi-
tions could be observed for high efficiency of speech input. A significant interaction
between benefit and error rate could not be observed.

Table 3.4 Experiment 3. Means M and standard deviations SD of speech usage in dependence of
Bspeech.

Condition Bspeech 0 1 2 3 4 5

[T 00,S00] M [%] 0.40 0.55 0.68 0.74 0.79 0.69
SD [%] 0.36 0.39 0.36 0.31 0.30 0.33

[T 20,S00] M [%] 0.75 0.89 0.88 0.87 0.86 0.89
SD [%] 0.35 0.21 0.21 0.25 0.25 0.23

[T 00,S20] M [%] 0.37 0.72 0.71 0.80 0.73 0.86
SD [%] 0.32 0.28 0.24 0.28 0.32 0.29

[T 20,S20] M [%] 0.59 0.86 0.93 0.92 0.91 0.88
SD [%] 0.26 0.18 0.08 0.22 0.11 0.21

3.4.3 Discussion

The results confirm the findings of experiments 1 and 2 indicating that modality
selection is influenced by modality efficiency. If desired items are to be found in
a deep-set layer of a list, speech is preferred over touch screen due to shortcuts of
speech input.

The results of the condition [T00, S20] with a 20 % ASR error rate are in line
with the findings of experiment 2 where ASR error rates of 10% and 30% were
simulated. The condition [T00, S00] with no error-prone modalities, was expected
to have a higher difference compared to the [T00, S20] condition. In experiment 2
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higher speech usage was clearly visible if less ASR errors occurred. The results of a
significance test comparing the baseline conditions [T00, S00] of experiment 1 and 2
performed in the next section however reveals no significant differences. Regarding
both conditions with touch screen errors the results show significantly increasing
speech usage. Once touch screen input fails speech usage increases regardless of
whether ASR errors arise or not. Referring to modality usage in the condition [T20,
S20] it is concluded that touch screen errors are punished stronger than ASR errors.
One reason for this result could be that in today’s interfaces the probability for touch
screen errors is usually relatively low.

Overall the study reveals that users seem to be mostly aware of modality effi-
ciency and input performance and adapt their modality usage to these factors. The
results confirm that merging touch screen and speech input into multimodal inter-
faces is desirable for domains like list browsing as users can make use of more
efficient modalities.

3.5 Resulting Database

The series of experiments was designed for minimizing inter-experimental differ-
ences. However comparability may be limited to some extent, as changes in lab-
oratory rooms, task presentation method, and user groups appeared. As baseline
condition data comprising errorless interaction for both input modalities was gath-
ered in experiments 1 and 3. No significant differences in modality choice could be
found between the respective data sets (F(1,26) = 2.54; p < .123; η2

p = .089). In
order to ensure a better comparability of the individual conditions with respect to the
size of the sample only baseline data from experiment 1 was used. Taken together
data from six different error conditions comprising 82 participants was gathered and
merged into one database.

The database was checked for outliers potentially causing significant degradation
of a model’s predictive power. Two criteria have been considered. The first pertains
to the slope of the linear model computed from the modality usage profile of indi-
vidual participants. With respect to the effect of the levels of interaction steps, the
slope should be positive for all participants of all experiments. If the slope is neg-
ative the participants’ modality choice trend is contrary to average user behavior.
Considering all experiments, the slope of 5 participants turned out to be negative. It
was determined that participants with a slope smaller than -0.5 should not be used
for model development, as their data will significantly reduce model performance.
One participant from the [T00, S20] condition of experiment 3 did not match this
requirement and was therefore omitted. Furthermore, the impairment of model per-
formance is less intense, if negative slopes are small and the average amount of
speech usage is relatively high. Thus, as a second criterion, it was determined that
participants should be excluded if the slope was negative (between -0.5 and 0) and
average speech usage was smaller than 50%. One participant from the [T20, S00]
condition of experiment 3 was therefore omitted from the model development. Dif-
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ferences between Figure 3.2 and the tables reporting the results of the experiments
can be attributed to the omission of outliers.

For each of the 80 remaining participants the resulting database contains the er-
ror condition and the average speech usage for each level of benefit. Generated by
averaging speech usage over all participants of a condition, the speech usage curves
in Figure 3.2 yield a summary of the data. All curves are arranged according to
the error conditions. All graphs illustrate the percentage of speech usage (y-axis)
as a function of Bspeech (x-axis). Despite certain inter-experimental differences the
curves are mostly consistent with each other. Regarding all ASR error conditions,
speech usage increases with increasing Bspeech. Furthermore speech usage decreases
with increasing ASR error rate. Only minor differences can be observed between er-
ror curves of 0% and 10%, as well as between 20% and 30%. The touch screen error
conditions, consisting of a baseline and a 20% touch screen error curve, show mostly
consistent behavior. Speech usage increases in the presence of touch screen errors.
Regarding the 20/20% curve in the mixed condition speech usage is decreased for
Bspeech = 0, as the speech input cannot assert its benefit in efficiency. For higher
levels of Bspeech, speech usage increases and the curve runs similar to the 20% touch
screen error condition curve. As both ASR and touch screen errors are present in the
mixed condition, this implies that touch screen errors are punished more severely
then ASR errors.

Fig. 3.2 Modality usage curves gathered from three experiments. The 0% baseline was gathered
in experiment 1. The 10% and 30% ASR error conditions were gathered in experiment 2. The 20%
ASR error condition as well as the 20% touch screen error condition and the 20/20% mixed error
condition were gathered in experiment 3.

3.6 Chapter Summary

In this chapter a series of three experiments with a prototypical multimodal system
called the restaurant booking application (RBA) were described. The RBA inte-
grates touch screen an speech input. During the design of the RBA and in the design
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of the RBA experiments it was attempted to consider strategies of human decision-
making. Looking for restaurant comprises list browsing tasks, where speech usage
is more efficient, if the desired item is to be found in a deep-set layer of a list. During
the experiments modality efficiency of the speech interface and input performance
of both modalities were independent variables. The results of the experiments reveal
mostly consistent modality selection behavior. On the one hand the usage of speech
increases with an increasing modality efficiency of speech (H2). On the other hand
the usage of a modality decreases if its input performance decreases as well (H1).
The results of all experiments were merged into one database and the consistency
of the data was analyzed. Only two outliers had to be excluded. The database will
be used for fitting the free parameters of the modality selection model derived in the
next chapter.
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Chapter 4
A Computational Model of Modality Selection

The aim of this chapter is the derivation of a computational model that enables the
prediction of modality usage if more than one input modality is offered (Schaf-
fer et al., 2015). Section 4.1 briefly summarizes the motivation for a utility-driven
model. In Section 4.2, the model is created step by step. The predictive power of the
model is analyzed in Section 4.3. A first application example is presented in Section
4.4. Section 4.5 concludes with a summary of this chapter.

4.1 Motivation

The empirical data presented in Chapter 3 implies that system users adapt modality
usage to the estimated utility of modalities. Speech input is usually preferred, if it is
more efficient in terms of interaction steps. In contrast speech usage decreases with
increasing ASR error rate. The perceived utility, guiding users’ modality choice,
is affected by modality efficiency and input performance. The factors come along
with a cost-benefit tradeoff: the expected utilities of modalities are offset against
each other. In our model, efficiency is operationalized as the number of needed in-
teraction steps to solve the task. If a task can be solved with fewer interaction steps
in a specific modality, a shortcut exists, increasing the probability of modality usage.
Further, input performance is operationalized by system errors like ASR errors or
touchscreen malfunction. These factors are outlined in Table 4.1. The factor i is de-
termined either by overt touch input or by utterances aimed at inputting information
using speech input. An example of interaction steps considered by the model was
depicted in Table 3.1. The steps partly correspond to the steps of a process model,
as defined by KLM or GOMS (John and Kieras, 1996). A close affinity between
the utility model and process models is worthwhile, as thereby the integration of the
modality choice mechanism into AUE tools like CogTool (John et al., 2004) is sup-
ported. Process models mainly predict the time it takes to complete a task and are
not directly able to predict modality selection. In a GOMS way of speaking, touch
and speech input can rather be understood as different methods and the modality

51
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prediction model could eventually be used as a selection rule. In the next section the
modality selection model is created step by step.

Table 4.1 Factors relevant to the utility driven model.

Factor Description Domain

i Interaction steps needed for solving a task or sub task using a specific modality i ∈ N
er The average error rate of a modality er ∈ [0,1]

4.2 Model Derivation

4.2.1 Expected Number of Interaction Steps

4.2.1.1 Probability Criterion for a one-step Task

As mentioned before, empirical evidence implies that system users weigh the ex-
pected number of needed interaction steps while concurrently considering alterna-
tive modalities. The user can easily anticipate the pure impact of interaction steps if
the steps to solve the task are easily comprehensible. However, the user cannot be
absolutely sure about forecasting the exact number of interaction steps, since more
steps than expected may be necessary due to system errors. Therefore, the aim is to
operationalize the expected number of interaction steps by means of both factors,
specifically interaction steps and system errors. Thus, a criterion incorporating inter-
action steps and error rate is needed to capture the costs of using a certain modality.

At first, one-step tasks are considered, i.e., tasks solvable in only one interac-
tion step. In the case of the RBA, selecting a specific list and browsing for an item
within a list are defined as distinct sub tasks. One-step tasks are sub tasks where
the required list item can be found on the first list screen. Thinking about possible
system errors er, such a task can be conducted with 1 to n steps, as errors entail that
system input has to be re-performed. The probability p(n) for solving the task after
n steps is:

p(n) = (1− er) · ern−1 (4.1)

If no errors occur (n = 1), p(1) equals the accuracy 1− er of the input interface.
If errors occur (n > 1), the error probability er has to be considered for each error-
prone interaction. Thus, if n steps are needed, er takes effect n− 1 times until the
goal is reached after the nth step at which the accuracy 1− er has to be attributed.
Table 4.2 illustrates the formula. The first row indicates possible values of n. The
second row illustrates how the calculation of probabilities changes with increasing
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n. For every step to be added, er must be multiplied. The last two rows show two
examples for possible values of er.

Table 4.2 The probability to solve a one-step task with n steps.

n 1 2 3 ≥ 4

p(n) = (1− er) ·er ·er ...

er = 0.1 0.9 0.09 0.009 ...
er = 0.3 0.7 0.21 0.063 ...

According to the probability axioms, the total probability of all possible events
(1≤ n≤∞) must equal 1. In this situation the limited number of screens in the RBA
does not act as an upper bound of the sum. The upper bound only states the number
of entries that can be misinterpreted by the system directly after another, which is
by definition not limited.

∞

∑
n=1

p(n) = 1 (4.2)

Utilizing the convergence of the geometric series (Cgs.), one can prove that this
is the case for the aforementioned formula of p(n)

∞

∑
n=1

p(n) =
∞

∑
n=1

(1− er) · ern−1 = (1− er) ·
∞

∑
n=1

ern−1 Cgs.
= (1− er) · 1

1− er
= 1 (4.3)

However, a limitation must be mentioned: in the case of occurring ASR errors,
the system reaction can be diverse. ASR errors can lead to other system states from
where it is not possible to proceed directly with the actual task. In these cases, more
than one step may be necessary to start a new trial (depending on the system imple-
mentation and the error type). The proposed model in simplified terms assumes that
a new trial is possible directly after each system error.

4.2.1.2 Expected Number of Interaction Steps for a one-step Task

For a task actually solvable with one step, a higher number of steps can be expected
depending on the probability of system errors. If the number of actual interaction
steps corresponds to a stochastic variable S1, for a one-step task, the expected num-
ber of steps can be calculated by means of the expected value E(S1)

E(S1) =
∞

∑
n=1

n · p(n) =
∞

∑
n=1

n · (1− er) · ern−1 Cgs.
=

1
1− er

(4.4)
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The last simplification of the above expression again results from the character-
istics of the geometric series (Cgs.).

4.2.1.3 Expected Number of Interaction Steps for a i-step Task

In an i-steps task, the probability of system errors has to be considered in each step.
Thus, the expected number of interaction steps S can easily be deduced from the
one-step task equation. A task with i steps involves one-step i-times, resulting in the
expected value

E(S) = E(S1) · i =
i

1− er
(4.5)

4.2.2 Modality Utility

4.2.2.1 Objective Utility

If two input modalities are offered alternatively, the number of interaction steps to
solve the task can differ from each other for each modality. In other words, count-
ing in interaction steps, the utility of two modalities can differ. Thereby, the higher
utility is attributed to the modality incorporating less interaction steps to solve the
task.

An objective representation of a modality’s utility Uo can be generated from the
inverse of the expected value of interaction steps. Uo is then a function of interaction
steps i and error rate er.

Uo(i,er) =
1

E(S)
=

1− er
i

(4.6)

Assuming an ideal case with er = 0, the utility for a task with one interaction
step equals 1

Uo(1,0) =
1−0

1
= 1 (4.7)

The calculation example illustrates the maximum objective utility. With i ∈ N
and er ∈ [0,1], one can assume that Uo ∈ [0,1]. Utility decreases if either interaction
steps i or the error rate er are increasing.

4.2.2.2 Modality Specific Weighting of Interaction Steps

The equation can further be extended by a weight that integrates modality-specific
effects of interaction steps. The additional factor should thereby incorporate modal-
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ity choice moderators like the average time per interaction step of a modality, cog-
nitive load caused by using the modality or personal preferences.

Ut(i,er) =
1− er

i · t
(4.8)

As we assume that the weight correlates with the average task time, we choose
the identifier t and determine its domain as t ∈ R+. The value of t will be derived
by parameter fitting.

4.2.2.3 Modality Specific Weighting of System Errors

Errors caused by different input components of a system are differently perceived
and rated by the users. Empiricism shows that touch screen errors have higher influ-
ence on modality choice than ASR errors (Schaffer and Minge, 2012). According to
the integration of modality-specific effects of interaction steps, the effects of system
errors can be considered by extending the objective utility equation with a weighting
factor w (with w ∈ R+). The value of w will be derived by parameter fitting.

Uw(i,er) =
1− er ·w

i
(4.9)

4.2.2.4 Perceived Utility

To obtain a utility function affected by modality specific effects regarding interac-
tion steps and input performance, both factors have to be jointly considered. Based
on probability theory, the utilities Ut and Uw can be seen as statistically independent
(Chow and Teicher, 2003). Thus the joint utility equals the product of single utili-
ties. Perceived utility is therefore calculated by multiplying the weighted utilities Ut
and Uw. The resulting function for perceived Utility U is

U(i,er) =Ut ·Uw =
1− er

i · t
· 1− er ·w

i
=

1− er− er ·w+ er2 ·w
i2 · t

(4.10)

We assume that free variables differ between systems and user groups. Thus,
values have to be calculated for each system version and user group, to obtain valid
predictions for modality choice.

4.2.3 Modality Usage Probability

To calculate the usage probability of a modality m1, the utility Um1 is divided by the
sum of utilities of the involved modalities. In this way, modality usage probability
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Pm1 for the modality m1 is constructed. Regarding two input modalities, Pm1 inte-
grates all considered variables and is thus a function of all error rates and interaction
steps of all modalities.

Pm1(im1,erm1, im2,erm2) =
Um1

Um1+Um2
(4.11)

=
i2m2·(1−erm1−erm1·wm1+er2

m1·wm1)

i2m2·(1−erm1−erm1·wm1+er2
m1·wm1)+c·i2m1·(1−erm2−erm2·wm2+er2

m2·wm2)

The free variable c integrates the factors t of both modalities (c = tm1/tm2). To
enhance readability, we substitute arithmetic expressions in numerator and denomi-
nator and get our final form of the modality probability after rearranging as

Pm1(im1,erm1, im2,erm2) =
1

1+ c · (b/a)
(4.12)

with

a = i2m2 · (1− erm1− erm1 ·wm1 + er2
m1 ·wm1)

and

b = i2m1 · (1− erm2− erm2 ·wm2 + er2
m2 ·wm2)

4.2.4 Intermediate Summary

To summarize, a model to forecast the probability of modality usage was derived,
based on the perceived utility of currently available input modalities. The perceived
utility is determined by the expected number of interaction steps, which can be cal-
culated as a function of input performance and modality efficiency. By incorporating
performance- and efficiency-specific weights, the model is adaptable to new systems
and different user groups. The model computes higher modality usage probability
values if the usage of a modality leads to fewer interaction steps and maintains a
lower error rate. In the next section the predictive power of the model is analyzed.

4.3 Analysis of Predictive Power

In this section the predictive power of the model described in Section 4.2 is evalu-
ated. Implementation, model parameters, target values, and the evaluation procedure
are described in Subsection 4.3.1. Subsection 4.3.2 depicts the results of the perfor-
mance analysis of specialized models (built from ASR, touch, or mixed error con-
ditions) as well as an integrative model (built from all conditions). The performance
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of the integrative model on specialized data is further evaluated in Subsection 4.3.3.
The results are discussed in Subsection 4.3.4.

4.3.1 Model Settings

4.3.1.1 Implementation and Parameter Fitting

The modality probability model is implemented in Python. The free parameters
wm1, wm2, and c are fitted by means of the Sequential Least Squares Program-
ming (SLSQP) solver of SciPy 0.11. In our case, SLSQP optimization minimizes
the mean squared error between predicted values of speech usage and correspond-
ing empirical target values.

4.3.1.2 Input Parameters and Model Data Sources

Table 4.3 outlines the data of the 6 different conditions gained from the three ex-
periments described in Chapter 3. For model development the data from all three
experiments was combined. The experiments were designed for minimizing inter-
experimental differences. The database described in Section 3.5 was used for param-
eter fitting. Column n indicates the number of participants for each condition. Ac-
cording to the modality probability equation derived in Section 4.2, for each modal-
ity the model’s input parameters are the simulated error rates (erspeech and ertouch)
and the number of interaction steps (ispeech and itouch) form the current state to the
next (sub) goal. Due to speech shortcuts ispeech is constant, whereas itouch varies from
1 to 6 to reach the (sub) goals. The parameter itouch was varied in all experiments,
and is available for each experimental condition. Therefore for each combination of
ispeech and itouch the probability of speech usage pspeech is also differentiated in six
levels for each participant.

Table 4.3 Data used for the different conditions. The last four columns specify what data were
used for each model.

Cond. n erspeech ertouch ispeech itouch pspeech SED TED MED INT

T00, S00 1-16 0 0 1 1-6 pn,1− pn,6 X X X X
T00, S10 1-16 0.1 0 1 1-6 pn,1− pn,6 X - - X
T00, S20 1-12 0.2 0 1 1-6 pn,1− pn,6 X - - X
T00, S30 1-13 0.3 0 1 1-6 pn,1− pn,6 X - - X
T20, S00 1-11 0 0.2 1 1-6 pn,1− pn,6 - X - X
T20, S20 1-12 0.2 0.2 1 1-6 pn,1− pn,6 - - X X
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Four different versions of the model were trained, each comprising different ex-
perimental conditions as data sources. The last four columns of Table 4.3 specify
precisely what data were used for each model. The first three models are a spe-
cialized speech error-driven (SED) model, a touch error-driven (TED) model, and a
mixed error-driven (MED) model. The fourth model integrates all conditions (INT
model). The SED model is trained using data sets comprising speech recognition
errors. The TED model as well as MED model training data comprises data sets
with touch screen errors respectively mixed errors conditions.

4.3.1.3 Target Variables

The prediction models estimate the probability of users’ modality choice. An indi-
vidual modality usage profile is available for each individual test subject. However,
the individual data may introduce a significant amount of noise in the prediction, as
modality usage behavior strongly varies between participants. Furthermore, averag-
ing over all participants of a condition may lead to a loss of information.

The experiments described in Section 2 were designed for collecting modality
usage data for six different levels of benefit of speech (with Bspeech amounting from
0 to 5) and six experimental conditions (differing in the error setting). We therefore
decided to use the following two target variables:

• Individual subject predictions are obtained by averaging modality usage over the
same levels of benefit of each participant, resulting in 80 individual modality
usage profiles.

• Averaged predictions are obtained by averaging modality usage over the same
levels of benefit and over all participants of a condition, resulting in averaged
modality usage profiles for the 6 conditions.

4.3.1.4 Performance Evaluation

Performance has been analyzed for the distinguished target variables and two train-
ing cases:

• All cases (ALL): Within-data performance was analyzed using identical training
and test sets (interpolation). The analysis was conducted for modality usage pre-
dictions of individual subjects as well as for averaged data. All cases are used as
training data.

• Leave-one-out (L1O): Out-of-data performance was analyzed by performing
leave-one-out cross-validation (extrapolation). For modality usage predictions of
an individual subject, data from one user is omitted in the training. The respec-
tive data are taken for testing a model trained on the remaining n− 1 users. For
modality usage predictions of averaged data, data from one condition is omitted
in the training, and the respective data is taken for testing a model trained on the
remaining conditions.
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The performance of the obtained models has been evaluated by means of the
amount of covered variance R2 and by the root mean squared error RMSE. Predic-
tion power of the integrative model on specialized data (speech error, touch error or
mixed error data) is evaluated by performance comparison with specialized models.
The lower the degradation of the INT model performance for the specific data, the
higher is the robustness that can be attributed to it.

4.3.2 Performance Analysis Results

The performance measures for all models are given in Table 4.4. For the within-data
(ALL), R2 amounts from 0.40 to 0.44 for individual subject target values and 0.90
to 0.95 for averaged target values. Best results are obtained for the MED model.
According to our assumption, averaged data provides better performance than the
prediction of individual subjects’ modality usage. Individual modality-usage pro-
files can vary strongly, resulting in lower R2. The RMSE amounts from 0.21 to 0.24
for individual subject target data and 0.04 to 0.06 for averaged data. Higher vari-
ance of individual subject data causes higher error values. Lowest error values are
obtained for the MED model.

Table 4.4 Performance on training (ALL) and independent test data (L1O) with the speech error
driven (SED), touch error driven (TED), mixed error driven (MED) and integrative (INT) models.
Values in bold indicate best performance.

Configuration Training Performance
Model Target R2 RMSE

SED Individual subject ALL 0.433 0.243
SED Averaged ALL 0.910 0.066
TED Individual subject ALL 0.400 0.220
TED Averaged ALL 0.936 0.044
MED Individual subject ALL 0.435 0.211
MED Averaged ALL 0.948 0.042
INT Individual subject ALL 0.407 0.232
INT Averaged ALL 0.899 0.063
SED Individual subject L1O 0.414 0.245
SED Averaged L1O 0.883 0.075
TED Individual subject L1O 0.349 0.229
TED Averaged L1O 0.054 0.167
MED Individual subject L1O 0.402 0.218
MED Averaged L1O 0.522 0.126
INT Individual subject L1O 0.388 0.235
INT Averaged L1O 0.865 0.073
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When testing the models on unseen test data (L1O), the performance decreases
in all cases. This result shows that the models are better in interpolating the training
data than in extrapolating to unseen test data. Regarding individual subject target
data, the lowest degradation is observable for the SED model, whereas for averaged
data the INT model is on a par with the SED model. The considerable degradation
of the TED model for averaged target values can be attributed to the small amount
of available training data. For the cross-validation, averaging over two conditions
results in only one test and training set. The performance decreases due to consid-
erable differences between these two conditions. Although the lack of training data
also has an effect on the MED model performance, the decrease in R2 is consid-
erably smaller. The lowest RMSE can be reported for the INT model for averaged
target data and for the MED model for individual subject data.

4.3.3 Specialized Data Prediction Power of the Integrative Model

The integrative model is applicable to varying error conditions, as it is trained on
all available data. However its capability in predicting special condition data may
be limited. If only ASR and no touch screen errors arise, the predictive power of
the integrative model can be reduced, as the touch error and mixed error conditions
can have a contradictory impact on the fitting of free parameters used by the SED
model. The performance of the specialized SED model may in this case be higher.
However, with regard to conditions where more data is necessary for consistent
model development, the inclusion of similar conditions might improve prediction
performance. Therefore the predictive power of the integrative model on specialized
error conditions is of interest. In Table 4.5 the performance values of the integrative
and specialized models on specialized test data is compared.

Considering within data (ALL) comparisons, only marginal performance losses
can be observed for the integrative model. The differences between averaged and
individual subject target data are in line with the results from Section 4.3.2. The
performance comparison on unseen data (L1O) reveals consistently increased pre-
dictive power of the integrative model. Significant gain can be observed for average
MED and TED data. The inclusion of all available data here takes effect. If not
enough specialized data is available, notable performance improvements are possi-
ble by employing the integrative model.

4.3.4 Discussion

Four models for predicting modality choice in differing error conditions were ana-
lyzed with respect to their performance in both describing known within-data (inter-
polation) and predicting unknown test data (extrapolation). For extrapolation leave-
one-out cross-validation was performed. Further an integrative model was compared



www.manaraa.com

4.3 Analysis of Predictive Power 61

Table 4.5 Performance comparison of the integrative and specialized models on training (ALL)
and independent test data (L1O). Values in bold indicate best performance.

Configuration Training Specialized models Integrative model
Test data Target R2 RMSE R2 RMSE

SED Individual subject ALL 0.433 0.243 0.432 0.241
SED Averaged ALL 0.910 0.066 0.909 0.066
TED Individual subject ALL 0.400 0.220 0.391 0.222
TED Averaged ALL 0.936 0.044 0.911 0.051
MED Individual subject ALL 0.435 0.211 0.426 0.213
MED Averaged ALL 0.948 0.042 0.929 0.049
SED Individual subject L1O 0.414 0.245 0.416 0.245
SED Averaged L1O 0.883 0.075 0.883 0.075
TED Individual subject L1O 0.349 0.229 0.366 0.226
TED Averaged L1O 0.054 0.167 0.841 0.069
MED Individual subject L1O 0.402 0.218 0.407 0.217
MED Averaged L1O 0.522 0.126 0.850 0.071

to three specialized models, regarding the predictive power on specialized error con-
ditions.

Concerning the training on all available data (interpolation), all models show
considerable fit on averaged target data. Significant performance degradation can
be observed for all models when describing individual subject behavior. The effect
can be attributed to differences in individual modality-choice profiles. Individual
subject profiles sometimes show contradictory behavior compared to averaged data,
resulting in decreased goodness of fit.

For extrapolation the SED model performs best with respect to both average and
individual subject behavior. If only ASR errors are present in the data, average user
behavior is generally predicted correctly. The extrapolation performance of the inte-
grated model is similarly good. Considerable performance losses when compared to
interpolation can be observed for the MED and the TED model. These losses can be
attributed to the lack of available training conditions. Data for more differing touch
error conditions as well as mixed error conditions are needed to build models that
can enable improved predictive power for unseen data.

The examination of the predictive power of the integrative model on specialized
error conditions revealed only marginal performance losses for within data. Testing
the integrative model on unseen data revealed consistently increased performance
for all conditions. For average MED and TED data an enormous increase of pre-
dictive power was observed, strengthening the reliability of the integrative model.
All in all, the integrative model seems to be a useful means to predict modality
choice for various error conditions. The remarkable extrapolation strength for un-
seen user behavior, in particular, constitutes a substantial value and supports the
model’s transferability capabilities and validity.
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It can be expected that the integrative model would beneficially support simu-
lation tools for multimodal HCI since interactive behavior should be reproduced
more realistically than by randomly selecting modalities. Existing impairments in
predictive power and prediction errors can be caused by factors influencing modal-
ity choice that are not covered by the model so far. In the field of AUE such factors
can also bias the usability predictions generated from simulated interactions. It is
possible that unconsidered factors have an effect on specific tasks, systems, or user
groups. To gain knowledge about which usability evaluations should be treated with
caution, it will be necessary to identify reliability gaps in the proposed model as
well as the factors causing these gaps.

In the next section a first application of the model implemented in MATLAB
gives an impression about an existing limitation of the model. An indication that the
information that the users obtained from the task does not completely match their
mental model of the system is detected. As a preparation of the later integration in
real AUE tools, the example also demonstrates how the model can successfully be
implemented within state-based simulations. In order to reveal significant effects of
so far unconsidered factors of modality selection that might limit the applicability
of the model detailed comparisons between the behavior of real users and simulated
data have to be performed.

4.4 Application Example

Before the integration of the model into the real AUE tools MeMo and CogTool is
described in Chapter 5, in this section the models’ general applicability for state-
based simulations is tested. The application example aims at demonstrating benefits
and limitations of the developed modality choice mechanism before the more elabo-
rate integration in AUE tools. System, user, and task models are implemented using
MATLAB1.

4.4.1 System Model

The MATLAB system model of the Restaurant Booking Application (RBA) intro-
duced in Chapter 3 is implemented as a finite state machine, a concept often used as
a computational representation of interface designs (Möller et al., 2006). Looking
for a restaurant using the RBA, the main task is to select predefined list items. The
list selections comprise the following sub tasks: (1) city, (2) cuisine, (3) time and
(4) people. Using speech input all sub tasks are directly processable within the first
list screen. As each list item is directly accessible by speech input, the interface of
the system reveals speech shortcuts. In the GUI, all items were ordered alphanu-

1 http://www.mathworks.com/products/matlab/
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4.4.3 Simulation Results and Discussion

Modality usage data gained from the MATLAB simulation was compared to human
data gathered in experiment 1, which is based on the corresponding input parame-
ters ispeech, itouch, erspeech and ertouch (compare Section 3.2). Overall a considerable
fit of the model to empirical data can be reported (R2 = 0.868, RMSE = 0.065). For
both human and model data, Figure 4.1 depicts the relation between the percentage
of speech usage and Bspeech, whereas the latter was varied between the sub goals3.
The standard deviation of the model data shows the same relation as human data:
the higher the percentage of speech usage, the narrower the standard deviation. The
predicted percentage of speech usage is mostly in line with human data. Therefore,
for most sub tasks, decisions made on the basis of the modality choice model are of
use. In the application example, a system designer might draw the same conclusions
from the model as from the human data, namely that the speech input is preferred by
the user as soon as it becomes more efficient, and that the touch screen is selected
more often if both modalities are equally efficient. This information could be used to
change the interface design. The user could activate speech input if no speech short-
cut exists. If speech shortcuts exist, however, speech input could be automatically
activated and an appropriate notification could be integrated in the GUI.

However, human and model data are not totally in line. For the numerical sub
tasks (”time” and ”people”) noticeable deviation can be observed for two cases:
compared to model data, lower speech usage would be expected for human data in
the sub goal ”22:00” of task 10 and higher speech usage in the sub goal ”11:00” of
task 15. The model at this point strictly adjusts modality usage to Bspeech. However
the human decision seems to be influenced by additional information. Considering
the information the user gains from the task, for both cases human speech usage
data is associated with numerical values: for ”22:00” higher speech usage can be
observed then for ”11:00”. Table 4.6 depicts the discrepancy between Bspeech and
numerical values within the list screens. It can be seen that the height of the numer-
ical values on the list screens can not directly be associated with Bspeech. This refers
to an opposing effect of task and system design: in between tasks higher numerical
values of sub goals are not necessarily associated with higher Bspeech, as lists within
the RBA start with different values (”12:00” for ”time” and ”1” for ”people”). For
alphabetical sub tasks, a similar tendency could be observed. The observed speech
usage points to the fact that the participants decision for a modality is affected by the
alphanumerical information obtained from the set task. This provides an indication
that the information that the users obtained from the task does not completely match
their mental model of the system. However, it has to be noted that the described ef-
fects of task design were not systematically varied in the studies. Further research
will be needed to investigate the significance of the observations.

The modality choice model is so far not able to cover the described task effects.
As the model was build using overall data from tasks, including sub tasks with di-

3 Note that the distribution of Bspeech was well balanced over all of the 15 experimental tasks,
although it is not absolutely balanced in task 10.
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Table 4.6 Discrepancy between Bspeech and numerical values within list screens.

Bspeech 0 1 2 3 4 5
List screen 1 2 3 4 5 6

Numerical 12 16 20 24 4 8
values 13 17 21 1 5 9

14 18 22 2 6 10
15 19 23 3 7 11

verse combinations of Bspeech, task effects should generally average out. An overall
comparison between alphabetical and numerical tasks revealed no significant effects
regarding modality usage. A system designer using the model to forecast modality
choice behavior should confirm possible mismatches of task and system design and
carefully select the tasks to simulate.

4.5 Chapter Summary

In this chapter a utility-driven model enabling the prediction of modality selection
has been derived. Modalities are selected based on the perceived utility of cur-
rently available input modalities. The perceived utility is determined by the ex-
pected number of interaction steps, which can be calculated as a function of in-
put performance and modality efficiency. The model incorporates performance- and
efficiency-specific weights in the form of free parameters. These parameters were
fitted to the empirical data gathered in Chapter 3. The analysis of predictive power
reveals that a model integrating data from all experimental conditions may benefi-
cially support AUE tools for multimodal HCI.

An application example demonstrates how information about simulated modality
usage can be utilized to evaluate the design of a multimodal interface. Designers
can use this information to adapt the interaction design of a system. Further an
opposing effect of task and system design is uncovered: in between tasks higher
numerical values of sub goals are not necessarily associated with higher Bspeech.
Instead, human speech usage data is associated with the numerical values, e.g. for
selecting ”11:00” speech usage is relatively low although Bspeech is at the maximum.
This effect is not covered by the model. An application of the model for the AUE
tools MeMo and CogTool is described in the next chapter.
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Chapter 5
Automated Usability Evaluation of Multimodal
Interaction

Several HCI studies revealed that multimodality affects the quality judgments of
system users (Metze et al., 2009; Wechsung et al., 2009). The employment of spe-
cific modalities can lead to different experiences during the interaction. As a con-
sequence, modalities should be selected as accurately as possible for automatic us-
ability evaluation (AUE), estimating the quality of multimodal systems. This chap-
ter documents the practical application of the created modality selection algorithm
within AUE tools. Section 5.1 documents the work done in order to enable multi-
modal simulations with MeMo and exemplifies the creation of multimodal MeMo
models and their application for the prediction of interaction steps. Accordingly
Section 5.2 explains how ACT-R models exported from CogTool can be rendered
multimodal and how the task execution time of skilled users with multimodal system
designs can be predicted by means of these models. Finally a comparison between
MeMo and CogTool is drawn in Section 5.3.

5.1 The MeMo User Simulation for Multimodal Interaction

In Section 2.3.6 it was concluded that multimodal systems can in principle be mod-
eled with MeMo. However, human modality selection can not be simulated cor-
rectly as necessary mechanisms are missing. It can be assumed that the application
of the algorithm derived in Chapter 4 represents more realistic predictions regard-
ing modality selection. To integrate the algorithm, needed input parameters have to
be available at the right time. Subsection 5.1.1 describes necessary extensions and
new integrations enabling multimodal simulations. It was further argued that MeMo
enables practitioners to create models of user interfaces and models of tasks to be
solved by means of these interfaces. Subsection 5.1.2 illustrates how attributes of
interfaces can be annotated, and how information exchange between user and sys-
tem model as well as task knowledge can be modeled exemplified by the RBA.
The RBA MeMo model will be the basis for the following sections dealing with
the simulation. In Section 5.1.3 it is shown that the modality selection algorithm
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is correctly implemented and that the necessary extensions do their work. Section
5.1.4 provides an application example for predicting the number of interaction steps
to solve specific tasks. Section 5.1.5 provides an overall discussion of the MeMo
modeling works.

5.1.1 Multimodal Extension

The module-based approach of the MeMo workbench and in particular the subdivi-
sion of the user model into several modules allow for the exchange and change of
individual modules. Table 5.1 summarizes significant extensions and new integra-
tions that have been made to the MeMo workbench. Within the components printed
in bold most relevant changes were made. The following subsections focus on the
description of these changes. The other changes are less complex. As they are part
of the new simulation process their role and functionality are sketched together with
the explanations of the most relevant changes.

Table 5.1 MeMo extension an new modules.

Change Component Description

Extension Perception module Implementations for the perception of multiple
modalities

New Processing module In tegration of modality selection
New List tracking module A new module for the annotation of dialogs with

interaction options that are part of a list
Extension Solution path calculator Implementations supporting the usage of multiple

modalities
Extension ASR error simulation Reuse of the ASR error rate so that the error rate

of the ASR is also taken for the modality selection
Extension Logging Expansions enabling the collection of modality

choice data
New Modality selection properties File for the configuration of the modality selection

parameters

5.1.1.1 List Tracking Module

The empirical results in Chapter 3 disclosed that it seems to be a prevalent strategy
not to change the modality within a list. When a list screen of the RBA was entered,
almost all users decided for a specific modality only at the first list screen and stayed
in this modality if they browsed through the list. The list tracking module was de-
veloped to implement this strategy. It represents an extension of perception module.
To make use of the list tracking the modeler can annotated dialogues as lists. During
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the simulation a ”ListTracker” checks if a dialog is part of a list. While entering and
leaving lists, it is examined if the user model should select a modality. According to
the described user behavior the logic in Table 5.2 for performing this examination
was created. The logic defines five cases in order to determine if the modality should
be selected or not. In each case the possible changes between the current list and the
previous list are taken into account. In the logic no/empty means that no list was de-
fined or that a defined list is empty. In summary, the modalities are always selected,
unless the user was in the previous state not in the same list as in the current state.
The next subsection describing the integration of the modality selection processing
module also refers to the list tracking and explains its application.

Table 5.2 Decision logic of the ListTracker: taking the status of the previous list and the current
list into account, five cases depict how the ListTracker affects, if a modality selection is performed
or not. In the first four cases where the previous list and the current list differ from each other a
modality selection will be triggered. The fifth case describes that a modality selection will not be
triggered if the previous list and the current list are identical.

Case Previous List Current list Modality selection

1 no/empty L1 yes
2 L1 no/empty yes
3 no/empty no/empty yes
4 L1 L2 yes
5 L1 L1 no

5.1.1.2 Changes of the Solution Path Calculator

The following extensions were made:

Path calculation with multiple modalities: The path search has been extended
by a modality filter for selecting the next steps. It is therefore e.g. possible that
only ”speech steps” or GUI steps may be used for the calculation of solutions.

Search of an ”optimal” solution before simulation: The standard use of the path
search is to search an ”optimal” solution before the simulation. For multimodal
simulations in principle 3 optimal paths are calculated: a multimodal path, a path
using the touch modality only, and a path using the speech modality only. For
multimodal simulations the calculation of the optimal path is performed at each
interaction step.

The determination of the steps to the goal: For multimodal simulations a de-
termination of the steps to the goal has been added for individual modalities.
The optimal solution is calculated starting from the current state.

Determination of partial solutions: A determination of partial solutions during
the simulation has been integrated, to speed up the calculation of the optimal



www.manaraa.com

70 5 Automated Usability Evaluation of Multimodal Interaction

solution. This was necessary because the exponential effort for the solution cal-
culation increases considerably when using many sub tasks. In summary, only
solutions for the next sub task are calculated by this extension.

5.1.1.3 Integration of the Modality Selection Processing Module

The modality selection processing module is derived from the default processing
module. The single steps of the simulation of multimodal HCI are basically the same
as described in Section 2.3. After the initialization the user model is equipped with
task knowledge, and the system model is set in the start state. The existing percep-
tion module was changed in order to enable the perception of multiple modalities.
All possible modalities are gathered now and then passed to the processing module.

Within the default processing module the use of multiple modalities was not sup-
ported. Once a possibility for speech input was found the speech path was selected,
even if an interaction object for touch input was part of the actual state of the system
model. The changes in the perception module now allow for performing the choice
of a particular modality within the processing module. To overcome the limitations
of the default processing module the following steps are realized in the modality
selection processing module:

1. Check which modalities are available.

• if only one modality is available a selection is not necessary. The simulation
continues with step 3.

• if two modalities are available, check if the user model actually navigates
through a list or not.
– if no, go to step 2.
– if yes, go on with the last-used modality and continue the simulation (step

3).

2. Choose modality by decision algorithm.
3. Continue the simulation with the selected modality.

The steps described above illustrate how the modality selection processing mod-
ule determines whether a modality selection should be performed. In the first step
it is checked for which modalities solution paths exist. Solution paths can either
be available for a single modality (GUI or speech input), or for both modalities. If
a solution path is available only for one modality a selection is not necessary. The
available modality is taken, step 2 is skipped and no modality selection is performed.
The simulation continues with step 3. If solution paths exist for both touch screen
and speech input, it has to be checked if the user model actually navigates through
a list. Therefore the decision logic of the ListTracker in Table 5.2 is applied. If the
user model navigates through a list in which it was previously, modality selection is
not triggered (step 2 is skipped) and the simulation is continued with step 3. If the
list was just entered or if the dialogue contains an empty list or no list, the modalities
selection is triggered.
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In step 2 the algorithm for modality selection derived in Chapter 4 is utilized.
Performing the modality selection the input parameters, namely input performance
and modality efficiency for all modalities currently having a solution, have to be
made available. The input performance of speech input could easily be made avail-
able as it is already considered in MeMo for the simulation of ASR errors. However,
for other modalities error rates are not part of the MeMo simulation. As argued in
Section 2.5 the extension of the error simulation for other modalities is not being
considered in this work.

Measured in interaction steps the efficiency of a modality to solve a specific
sub task corresponds to the number of interaction steps of a partial solution of the
task. For each modality, modality efficiency can therefore be calculated from the
solution path to the task. The partial solution represents the steps from the current
state to the goal state of the current sub task. As the current state and the goal state
of the current sub task are known during the simulation, it is possible to calculate
the partial solutions. Once the path of a partial solution is known, the number of
involved interaction steps can be determined.

The modality selection is performed with the calculated modality efficiency for
touch screen and speech input, and the specified input performance of speech input.
For touch input perfect input performance is assumed. The algorithm computes the
probability of speech input and decides for one of the modalities considering this
probability. Accordingly, the return value of the modality selection is the result of
the decision process, either to use touch screen or speech input.

Once the modality is fixed the simulation continues as described in Section 2.3.
Interaction objects fitting well with the user knowledge are assigned with higher
probabilities. As part of the processing, the rule engine can further influence the
probabilities of the interaction possibilities of the selected modality. However, as
depicted in the next section the rule mechanism is used for the simulations carried
out in this work. In the last step of the processing module one interaction object
is selected according to the probability distribution. The decision is passed to the
execution module where the selected interaction is performed. Continuing the sim-
ulation, the system state is updated according to the user input and it is checked if a
goal or a sub goal is reached. Accordingly, the interaction continues or the simula-
tion terminates.

5.1.2 Modeling the Restaurant Booking Application with MeMo

5.1.2.1 System Model

The dialogs modeled for the RBA are listed in the dialog pool panel of the dialog
designer shown in Figure 5.1. As an example the dialog ”City 1” is selected in
which buttons to select a specific city and to browse through the list are modeled.
In addition, the individual elements for speech interaction are listed. The graphical
user interface of ”City 1” is shown to the right of the dialog pool panel in an editor
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panel. The tab ”Voice” above the editor panel indicates that a speech interface is also
created for this dialog. Under the ”Editor panel” is the ”Property Panel” in which
various attributes of the dialog can be edited. Here also the new functionality for the
perception of lists has been integrated. By utilizing the attribute Containing List, a
dialog can be labeled as a list. All dialogs with the same label belong to the same list.
For the RBA four lists have been created for the categories city, (culinary) category,
time, and persons, each consisting of six dialogs (the list screens). Thereby the logic
described in Table 5.2 is applied.

Together with the interaction objects for touch and speech input the information
to be transferred to the system model is specified. For the RBA, this means that e.g.
the variable stadt (engl.: city) is to be set to the value ”Berlin” for the Berlin button.
For voice dialogs the information requested by the promt and the information that
can be transferred to the system model via an attribute value pair has to be set.
For all list screens this information transfer is straightforward. Figure 5.2 shows all
variables that have been defined for the RBA. For the highlighted variable stadt the
type string and a number of possible values are specified. The RBA information pool
splits up into domain variables and system variables. All domain variables have type
string and define either the possible values of the categories, or the category selected
at the start screen. The system variables are used in the transitions. They have the
type boolean and are used to define successful progress in solving the task or the
end of sub tasks. The following description of states and transitions provides further
insights into the use of information variables and the description of the RBA task
models.

The RBA model consists of 26 states that are interconnected by speech and touch
transitions. Since there are no interface elements that are to be re-used in multiple
states, the modeled dialogs correspond to system states. In principle, all states fol-
low the concept of touch screen and speech input presented here. Figure 5.3 shows a
detail of the system model designer in which the state ”City 1” is is selected. In the
graphical dialog on the left buttons are defined as interaction objects, whereas in the
voice dialog on the right the interaction object for processing speech input is repre-
sented by the red arrow. The panel on the right of the dialogs contains all defined
states and the panel at the bottom of the dialogs contains the transitions specified for
the selected state. Views of the system graph can be looked up in Appendix B.1.

The graphical transitions are symbolized by ”OK” buttons, whereas the arrow
symbolizes the voice transitions. If the domain variable stadt is set by touch or
speech input of the user model, the system variable isSetCity is set to true through
the consequence part of the transition. In Figure 5.4 left this is illustrated as part of a
speech transition. In the condition part of the transition the parameters ! isNoMatch()
and isValid() are defined. isNoMatch() allows to specify the behavior of the system
model in the case of ASR errors (deletions), whereas isValid() checks if the value of
the requested variable is valid. The transition in Figure 5.4 right defines the system
behavior if the parameter isNoMatch() is evaluated to true. As a consequence the
system goes back to the start screen and no information is transferred to the system.
As a consequence no information from the task knowledge is transferred to the
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Fig. 5.1 Dialogs of the RBA.
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Fig. 5.2 Information pool of the RBA.

system model. Therefore the user model will interact with the system model again
in order to meet respective goal conditions.

5.1.2.2 Task Models

As the entire restaurant selection task includes a relatively huge number of interac-
tion steps and because the system model is compared to other MeMo models rather
large, first simulation trials sometimes did not terminate. The available memory was
overloaded. Therefore single tasks for each list depth (LD) were created. The perfor-
mance of the entire tasks can then be composed of the results of the single tasks. The
modeled tasks reflect the tasks of the empirical studies. For each of the investigated
list depths exemplary task models are specified, meaning that for different tasks of
the empirical studies with the same list depth only one representative task model
(the LD task) exists. All of the six LD tasks are further split into two sub tasks. The
first sub task is to select the required list at the start screen, and the second sub task
is to pick the desired item from the list. The start screen is configured as start state.

Figure 5.5 shows the task designer. In the left panel the task named LD5 Sub-
tasksCityLeipzig is selected. The middle panel shows the properties of the task. No
specific initial system assignments (values for the available information variables)
are initially set. The two sub tasks are listed in the lower part of the panel. The task
properties for the selected sub task named ”SelectCity” are shown in the right panel.
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In the user knowledge it is specified that the user model aims at selecting the city list
as well as a specific city. Respectively the target values for the variable actionStart
is set to ”stadt” and for the variable stadt to ”leipzig”. It has to be noted that the
user knowledge of both sub tasks is the same. This ensures that the user model can
continue with the execution of the task, if errors happened during the interaction.
In the lower part of the panel the success conditions for the sub task are specified,
including the condition isSetCity == true that ensures that the sub task has been
conducted, and the condition stadt == leipzig that ensures that the right city has
been chosen. All LD tasks are structured as described here. User knowledge and
success conditions of all LD tasks can be looked up in Table 5.3.

Fig. 5.5 The RBA task designer.

Table 5.3 User knowledge and success conditions of all LD tasks.

LD task Knowledge - List (aktionStart) Knowledge - List item

LD1 Kategorie Amerikanisch
LD2 Personen 6
LD3 Zeit 20 Uhr
LD4 Zeit 0 Uhr
LD5 Stadt Leipzig
LD6 Kategorie Portugiesisch
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5.1.2.3 User Model

Regarding the user model no specific attributes or limitations are required. Within
the empirical studies the users were preselected in order to except users with specific
limitations like physical impairments or language skills. The default user model of
MeMo specifies standard values for all available user attributes. It can be looked up
in Appendix B.3

Further no rules were used for all simulations, in order to eliminate any side-
effects that could be caused by rules affecting the usage probability of single inter-
action objects. This can easily be done in MeMo by manually removing all the rules
from the rules folder. The effect of this simple intervention is that the probabilities
of the interaction objects are not affected by any rules, as no rules are existent.

5.1.3 Analysis of Simulated Modality Selection Behavior

The goodness of fit between human data and predictions of the modality selec-
tion algorithm was investigated in Section 4.3. In this section the integration of the
modality selection model in MeMo is validated. The baseline for the analysis of the
modality selection behavior of MeMo are therefore the predictions of the modality
selection algorithm. These predictions serve as goal values for the modality selec-
tion model integrated in MeMo. MeMo decides for a modality according to the
probability calculated by the modality selection algorithm. As a result of the MeMo
simulation the simulated percentage of speech usage should be approximately the
same as predicted by the algorithm. In order to validate the integration, in total 36
simulations were performed: 6 LD task simulations (differing in the level of modal-
ity efficiency) for each of the 6 experimental conditions of input performance. Each
simulation contains 128 iterations. Consequently for each of the simulations log
data for a specific LD task and a specific error condition is generated. Figure 5.6
illustrates the properties of the performed simulations. To adjust the error condition
adaptions in the property files were made. The corresponding MeMo properties can
be found in Appendix B.4.

In order to establish comparable data only simulated interactions performed at
the first list screen of the RBA system model were considered. Therefore for this
analysis the consequences of errors (referring to effects on state changes) do not
affect the modality selection results, and the simulations can be performed for all
conditions. In this context especially for touch screen errors it has to be mentioned
the that modality selection behavior can be simulated, while a number of steps pre-
diction can not be performed with the MeMo simulation so far as no mechanism for
the consideration of the effects of touch screen errors is integrated.

The number of touch screen and speech inputs st the first list screen was counted
and the percentage of speech usage was calculated. To illustrate the results of the
simulations Figure 5.7 contains one diagram with the relevant LD results for each
experimental condition. Data predicted by the modality selection algorithm (MSA)
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Fig. 5.6 Simulation view of MeMo.

is colored dark gray. All of the MSA curves have a smooth shape and the percentage
of speech usage increases with an increasing benefit of speech. The effects of ASR
errors can be best observed between the diagrams of the conditions [T00, S00] and
[T00, S30]. If no errors occur and the benefit of speech is zero the probability to use
speech already measures about 40 %, whereas the probability measures only about
20 % at the level of Bspeech = 0 in condition [T00, S30]. With an increasing level of
benefit this difference between the two error conditions becomes smaller and ends
at a level of Bspeech = 5 at about 5 percent. In the other conditions where only ASR
errors occur, the two curves just described serve as lower and upper bounds. The
percentage of speech usage always moves within these curves. If touch screen errors
occur, a considerably higher speech usage can be reported. In the condition with
touch screen errors only, speech usage measures already over 90 % if the benefit of
speech is only one step. In the mixed error condition the increase of speech usage is
smaller, but still considerably higher than in the other ASR error conditions. As in
the human data reported in Section 3.4 touch screen errors are punished harder than
ASR errors.

The data simulated by MeMo colored in light grey traces the curves of the modal-
ity selection algorithm quite well. Slight deviations arise as a result from the stochas-
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tic behavior of MeMo. The good fit is also reflected by a high overall R2 of 0.98 and
low RMSE of 0.03. The values for the single conditions are documented in Table
5.4.

Table 5.4 Performance measures of MeMo predictions for the validation of the integration of the
modality selection algorithm.

Condition R2 RMSE

T00, S00 0.994 0.020
T00, S10 0.997 0.020
T00, S20 0.988 0.038
T00, S30 0.981 0.036
T20, S20 0.972 0.024
T20, S00 0.978 0.016

5.1.4 Application for the Prediction of Interaction Steps

In this section the simulation of tasks of the empirical studies with the RBA sys-
tem model is depicted. The aim of the simulations is to predict the total number of
interaction steps of these tasks.

5.1.4.1 Modelling specifics

Within MeMo it is not relevant if a sub task of the restaurant selection task is numeri-
cal (like ”number of persons” and ”time”) or alphabetical (like ”city” or ”category”).
As a consequence these kinds of tasks do not necessarily have to be distinguished
in MeMo simulations. It must also be noted that with regard to modality selection
no significant differences between alphabetic and numeric tasks performed by real
humans could be found. For the prediction of the total number of steps to solve a
task however, the list depth of the items searched is of considerable importance. As
argued within this book users tend to adapt the input modality in order to save in-
teraction steps, and thereby reduce the total number of interaction steps to solve a
task. In order to test how the extended MeMo workbench performs the prediction
three tasks were selected. The only limiting factor was that all levels of list depths
should be included in the simulation. In order to produce comparable results it was
decided to use the same tasks as in the application example depicted in Section 4.4,
where the tasks 4, 10, and 15 were arbitrarily selected with the same requirements.

Regarding the different error conditions in human data, it has to be considered
that it is so far not possible to simulate touch screen errors with MeMo. ASR errors
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however, that can be simulated with MeMo, can affect the number of interaction
steps when using speech input. A difference in the total number of interaction steps
should be most evident, if the error conditions are most different. Therefore the
conditions [T00, S00] and [T00, S30] were selected in order to verify the effect of
errors. Human data from these conditions was used as a baseline for the simulation.
The tasks 4, 10, and 15 were extracted from the log files and the number of inter-
action steps was counted for each subject and for each of the tasks. The arithmetic
mean an standard deviation of interaction steps were calculated for all tasks in both
conditions.

For the MeMo simulation the RBA system model with the the required error set-
tings was used. Due to the memory issues already depicted in Section 5.1.2.2, LD
tasks were simulated instead of the entire restaurant selection task. As a differenti-
ation between alphabetical and numerical sub tasks is not necessary, the LD tasks
depicted in Section 5.1.2.2 can be used as representatives of the actual sub tasks.
Task 4 includes two sub tasks of LD 1 and two sub tasks of LD 2. Task 10 includes
one sub tasks of LD 3 and three sub tasks of LD 4. Task 15 includes two sub tasks
of LD 5 and two sub tasks of LD 6.

5.1.4.2 Simualtion and Prediction

The prediction of interaction steps comprises the following steps:

1. Simulate the four LD tasks suitable for the the actual task.
2. Calculate the average number of steps for each simulated LD task.
3. Calculate the predicted number of steps for the whole task.

Step one was performed with MeMo using 128 iterations per LD task. Before
the simulation was started, the error properties were set, the default user group was
chosen, and the respective LD tasks were selected. The settings can be viewed in
Appendix B.4. The MeMo log file created from the simulation contains the single
interactions for each LD task iteration. In step two for each iteration the number of
interaction steps was extracted and the average as well as the standard deviation for
the LD task was calculated. The predicted number of steps for the whole task was
calculated by summing the partial results from the LD tasks. The standard deviation
of the whole task was calculated by taking the square root of the sum of the squares
of the standard deviations of the LD tasks.

5.1.4.3 Results

Figure 5.8 shows the results of the prediction of interaction steps, at the top for
condition [T00S00], and below for condition [T00S30]. In general it can be seen
that the mean values of human and simulated data correspond better if the stan-
dard deviations correspond well. Furthermore in both conditions a slight increase
of interaction steps reveals in the human data between tasks. Here, it should be re-
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membered again that the modality efficiency of speech increases between the tasks.
Figure 4.1 summarizes the assignment of speech benefits to tasks. In the simulation
data, the number of interaction steps increases from task 4 to task 10, but then de-
creases again in task 15. As this deviation of the simulation data is present in both
conditions it can be assumed that the reason for the deviation is part of the model;
respectively a factor that is so far not considered by the model shows effect.

In the condition [T00, S00] the number of interaction steps increases only slightly
in the human data between tasks (with increasing efficiency modality of speech
input). This can be attributable to the use of speech shortcut. Obviously the user
tries to keep the number of interaction steps low. In the condition [T00, S30], an
increased number of interaction steps can be observed in the human data of the
tasks 10 and 15. This can be due to the fact that speech is used because it provides
a shortcut, but at the same time ASR errors show their effect.

The large differences in the standard deviations of the model data occur if the
user model selects the wrong list on the start screen. This can happen during the
MeMo simulation with a low probability. Within the wrong list the user model does
not find any information that could be provided to the system in accordance with its
task knowledge. The forward and backward navigation is by default available in user
knowledge. The interaction objects to move forward or backward therefore have a
higher probability in the simulation than the other list elements of the wrong list for
which no task knowledge exists. However, at some point a list item must be selected
in order to return to the start screen. Thus, the user model browses through the list
until a list item is selected. Due to the high probability of the forward and backward
buttons, the probability that the user model stays within a wrong list for a certain
time is relatively high1, whereby the number of interaction steps can get large. Once
the user model enters the start screen again by selecting one of the list items of the
wrong list, the execution of the sub task can be continued. If large differences or
in general high standard deviations appeared, the corresponding log files generated
during the experiments with real humans or by the simulations were examined for
outliers. The outliers occur either by remaining in a forward-backward loop in the
simulation or by differing interaction strategies of real users.

The concrete values are reported in Table 5.5. If outliers occur, also corrected
values are shown. For the simulated data corrections are done by removing the val-
ues of the respective iterations. In task 4 of condition [T00, S00] the predicted mean
(M) and standard deviation (SD) of interaction steps match the human data quite
well. The slightly higher standard deviation of the model data is caused by two
rather small forward-backward loops each with 15 steps. The corrected values still
fit fairly good. The large deviation of SD in task 10 is caused by a long forward-
backward loop of 125 steps. After the correction both M and SD of the model data
match the human data quite good. In task 15 high SD can be observed for human
data. It was mainly caused by one user who made use of a interaction strategy that
is not covered by the modality selection model, namely making use of touch screen
only. Data by this user have been omitted for the corrected results. Two other users

1 The author calls this a ”forward-backward loop”
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Table 5.5 MeMo vs Human data.

Condition Data Task M SD M (corr) SD (corr)

T00, S00 Human 4 9.500 0.935
MeMo 4 9.677 1.711 9.283 0.619
Human 10 10.125 3.238
MeMo 10 12.109 11.408 10.191 3.655
Human 15 11.563 5.160 10.400 2.603
MeMo 15 9.953 1.398

T00, S30 Human 4 11.154 1.791
MeMo 4 13.9375 5.363 11.979 1.612
Human 10 16.923 5.498 15.364 4.457
MeMo 10 17.423 5.590 15.906 3.450
Human 15 17.308 6.018 15.000 4.837
MeMo 15 15.391 3.784 14.703 2.981

data. The high SD in human data occurred as a few users utilized nearly only touch
screen, resulting in a higher number of interaction steps. Data of two users (with
25 and 26 interaction steps) have been omitted for the corrected results. The MeMo
simulation came in some iterations into a forward-backward loop. After removing
4 iterations (with 18-43 interaction steps) the corrected values for M and SD still
show a fairly good match. In task 15 the SD is relatively high within human and
model data, whereas the M value for human data is considerably higher. Again one
of the real users used touch screen only; further two users experienced an above
average number of ASR errors, resulting all in all in a high number of interaction
steps. These three users have been omitted for the corrected results. With regard to
the simulation data 3 forward-backward loops with 14-25 interaction steps occurred.
After the correction the model data match the human data better.

5.1.4.4 MeMo Reports

Additionally to the result for the simulated number of interaction steps for each per-
formed iteration, MeMo delivers a report (see also Section 2.3.5). The aim of the re-
port functionality is to provide insights into the usability of the tested system model.
Regarding the multimodal simulation the possibility of displaying and browsing
through the paths of the single iterations provides details about the involved sys-
tem states and transitions. For each transition details like probability, conditions and
consequences and alternative transitions can be viewed.

Figure 5.9 shows an example of the graphs of 4 iterations. All graphs have been
generated by the MeMo simulation. The task with list depth 5 was to select the city
”Leipzig”. The labeled boxes symbolize system states and the green or black arrows
with labels symbolize transitions. The transitions are green as long as the user model
is on the optimal solution path. If this path is left, the transitions are black. The labels
represent the name of the transitions, wheres the names have meaningful prefixes.
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The prefix ”btn” means that the corresponding interaction object is a button. The
prefixes ”vio” and ”sys” represent the speech interaction objects, whereas a specific
”vio” transition always belongs to a specific ”sys” transition. The ”vio” transitions
are easily distinguishable as they are always self-transitions of a system state. They
act, so to speak, as the speech processing unit of the system. Information that is
transferred from the user model to the system model is at first processed by the
”vio” transition and then the appropriate ”sys” transition changes the system state.
In this way, also ASR errors can be generated2.

The graphs 1,2, and 3 illustrate possible combinations regarding modality usage.
Graph 4 is an example of an interaction error including a froward-backward loop.
In graph 1 mixed modality usage is illustrated. In the state ”Start” at first the but-
ton btnStadt to select the city list is pressed. In the state ”City 1” speech input is
used (with vioCity1and sysCity1) to select a city. All transitions are green because
this mixed modality path also represents the shortest solution path for this task.
Graph 2 looks similar with the difference that only speech input is utilized by the
user model. Graph 3 illustrates the path if only touch screen input is used. The user
model browses to the state ”City 5” where it finds btnLeipzig, the button to select
the city ”Leipzig”. In graph 4 an interaction error takes place at the first interaction
in the state ”Start”. Instead of pressing the button for the city list the user model
presses the button for the list of the (culinary) category (btnKategorie). The MeMo
report discloses that the probability for the right button would have been over 95%.
However a low probability of choosing a wrong button that is always present in
MeMo takes effect in this case (see. Appendix B.8 for concrete probability values).
Within the category list the user model can not find an interaction object to transfer
the right information to the system model. By means of the integrated search strat-
egy it can browse to the end of the list. In state ”Category 6” the list ends and the
backward button gets the highest probability. Back at state ”Category 5” an intrinsic
preference of browsing forward lets the user model press the forward button again.
The report revels that this loop has been carried out 55 times. Within the graph the
thickness of the involved transitions also visualizes their high usage frequency.

As the optimal path is highlighted in green it is easy to notice when the user
model leaves the optimal path. The report further shows that the optimal path is
dependent on a particular combination of modalities. Certain users strategies, like
using touch screen only may significantly increase the number of interaction steps.
Simulating a sufficient number of iterations, one can assume that sooner or later
almost every possible interaction path, including the various options of modalitiy
combinations are found. Solutions that may involve usability problems are usually
easy to recognize, as they considerably differ from the optimal path.

2 It has to be noted, that the ”vio” transitions are not relevant for the calculation of modality
efficiency for the modality selection algorithm. However they are considered separately within the
report when the shortest solution path is calculated.
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5.1.5 Discussion

The extensions made to enable the simulation of multimodal interaction between
the user model and the system model work quite well. The analysis of the simulated
modality selection behavior of MeMo revealed that the modality selection algorithm
is correctly implemented into the workbench.

Though most other existing MeMo models include less states, compared to real
systems the RBA model with its 26 states is not really big. However, the simulation
of the whole restaurant selection task was not possible due to memory issues. By
splitting the whole task into smaller parts this problem could be solved. To permit
not only the analysis of smaller usability questions, but also to enable the modeling
of large systems and complex tasks, it is desirable that these problems are solved
MeMo internally.

The corrected predictions of the total number of interaction steps of three tasks
with different modality efficiency provide useful results for two different error con-
ditions. In combination with the MeMo reports the prediction results provide valu-
able insights into the usability of multimodal interaction. The reports reveal realistic
modality usage as well as different possible interaction strategies. If interaction er-
rors occur the user model can get into system states that are not on the optimal path.
In real systems such errors can for example occur due to typing errors. In the sub-
sequent states, the user model may have no information to transfer to the system. In
MeMo thereby forward-backward loops can occur, causing and increased average
number of interaction steps along with increased standard deviation. Through the
distorted behavior of the user model an interaction problem can be detected. In this
case, a back button could be helpful allowing to leave the list without selecting a list
element. MeMo includes rules supporting such an error recovery.

After the corrections in both error conditions the human data interestingly shows
a lower amount of interaction steps in task 15 then in task 10. As depicted above the
same trend was observed within the model data. One can therefore assume that the
differences in the uncorrected data arise from the interaction errors of the model on
the one side, and from different interaction strategies of the users on the other side.
Certain user strategies, like using touch screen only can significantly increase the
number of interaction steps. After the corrections the model data reflects the data
of human users quite good. This indicates that in addition to the modality selection
strategy, other strategies such as monomodal system usage should be considered in
MeMo simulations. Speech objectors could be modeled relatively easy by ignoring
the speech input possibilities. The number of objectors could be derived from the
data. For this work the consideration of the corrected data is acceptable as the in-
vestigation of different user strategies is not part of the studies conducted. The next
section explains how ACT-R models exported from CogTool can be rendered mul-
timodal and how the task execution time with multimodal system designs can be
predicted by means of these models.
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5.2 Adapting CogTool Simulations for Multimodal Interaction

As depicted in Section 2.4.6 multimodal designs and task demonstrations are possi-
ble with CogTool. However, if differences between tasks including divers sequential
combinations of input modalities are to be explored, several alternative task demon-
strations have to be recorded for each available modality combination of interest.
The modality selection algorithm can be used as a mechanism automatically gener-
ating these combinations. The aim of this section is to test the feasibility and validity
of a multimodal simulation that is based on ACT-R models generated by CogTool.
Subsection 5.2.1 describes the procedure developed in order to enable multimodal
simulations with ACT-R. Subsection 5.2.2 illustrates how the CogTool designs and
task demonstration of the RBA were constructed. The RBA CogTool model will be
the basis for the following sections dealing with the simulation. In Section 5.2.3 it
is shown that the modality selection algorithm is correctly implemented and that
the multimodal procedure in principle works. Section 5.2.4 provides an application
example for the prediction of the total task execution time of specific tasks. Base-
line predictions are generated with CogTool and ACT-R predictions are generated
according to the multimodal procedure. Section 5.2.5 provides an overall discussion
of the CogTool modeling works.

5.2.1 Multimodal Procedure

The aim of the multimodal procedure is to fuse a touch screen ACT-R model and a
speech ACT-R model generated by CogTool into one multimodal model. The basic
principle includes 2 steps:

1. Model creation: the CogTool part of the work, namely building a design of
the system, demonstrating tasks, and exporting unimodal ACT-R models for each
modality.

2. Model modification: building the multimodal ACT-R model.

An abstracted excerpt of the ACT-R model is illustrated in Figure 5.10. Regard-
ing the RBA this example could represent the selection of a list at the start screen
and an interaction on a list screen. Ovals symbolize concrete productions, while
boxes include several productions. Both the touch screen solution at the left and the
speech productions in the middle are generated from the CogTool script. The ”think”
modality selection productions are manually integrated during the task demonstra-
tion. The changes on the arrows between the ovals and boxes on the right are real-
ized by changes to the values of the goal state slots of the productions. Details of
this procedure are depicted in the following two subsections.
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5.2.1.2 ACT-R Model Modifications

The steps in which the modality selection should be executed have to be modified.
As the duration of the ”think” modality selection steps that were integrated during
the task demonstration was set to 0.1 second, they can easily be identified. Within
CogTool and within the generated ACT-R code these productions are the only ones
with the action time of 0.1 seconds. Listing 5.1 shows an example for an ”think”
modality selection production.

Listing 5.1 ”Think” modality selection ACT-R production generated from the CogTool script

1 ; ; S c r i p t s t e p ” t h i n k ” m o d a l i t y s e l e c t i o n
2
3 ( p Think−73
4 = goal>
5 i s a klm
6 s t a t e 54
7 ? manual>
8 s t a t e f r e e
9 ==>

10 ! b i nd ! = mod−se lec ted ( se lec t−mod 1 2 0 0)
11 ! b i nd ! =state−mod ( c o n c a t e n a t e ’ s t r i n g ”modspec8−1−” =

mod−se lec ted )
12
13 ! e v a l ! ( s e t− c o g t o o l− p l i s t : d u r a t i o n 0 . 1 : c u r r e n t− f r a m e ” 23

l i s t s c r e e n p e r s o n s l e v e l 1 ” )
14 = goa l>
15 s t a t e =state−mod )
16
17 ( spp Think−73 : a t 0 . 1 )

The lines 10 and 11 are added to the right hand side of the production. select−
mod is the function call for the modality selection algorithm. The Lisp implementa-
tion of the function can be looked up in Appendix C.1. The input parameters of the
function are from left to right:

ispeech the number of interaction steps needed via speech input. In this work the
number of speech interaction steps is always 1, as only speech shortcuts are con-
sidered

itouch the number of interaction steps needed via touch screen input. In this ex-
ample the number of touch screen interaction steps is 2.

erspeech the speech error rate. Speech errors are only considered for the analy-
sis of simulated modality selection behavior depicted in Section 5.2.3. In this
example the speech error rate is 0.

ertouch the touch screen error rate. Speech errors are only considered for the anal-
ysis of simulated modality selection behavior depicted in Section 5.2.3. In this
example the touch screen error rate is 0.

In the CogTool/ACT-R examples the factors erspeech and ertouch are only consid-
ered for the analysis of simulated modality selection behavior depicted in Section
5.2.3. As argued in Section 2.5 extensions with regard to error simulations are not
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being considered in this work. For the prediction of total task duration depicted in
Section 5.2.4 conditions with speech and touch screen errors are not considered.

The factor itouch is varied in the CogTool/ACT-R examples for the prediction
of total task duration. The return value of the function is stored in the variable
= mod− selected. It can be ”speech” or ”touch”. The variable = state−mod binds
the value of the state slot of the next production. For the multimodal procedure
the values of the state slots of the goal buffer need to be changed as now two
modality specific solution paths must be considered. For this feasibility example
”modspec8− 1− ” as the front part of the string is manually adapted for each
modality selection production and also for the subsequent modality specific pro-
ductions. After concatenating the front part of the string with the return value of
the modality selection, the value of = state−mod can in this example be either be
”modspec8−1−speech” or ”modspec8−1− touch”. The numbering is so because
in each task occur nine modality selections (here 8 was picked as a random exam-
ple), each having subsequent modality specific productions (therefore, the subse-
quent numbering). The first modality specific productions for speech and touch are
shown in Listings 5.2 and 5.3. In addition to the modified state slots, an !eval! state-
ment can be seen on the right hand side of the productions. It is used by CogTool to
detect the durations of productions and to characterize the current system state.

Listing 5.2 ”Think” speech execution ACT-R production generated from the CogTool script

1 ; ; S c r i p t s t e p ” t h i n k ” s pe e ch e x e c u t i o n
2
3 ( p Think−32−speech
4 = goa l>
5 i s a klm
6 s t a t e ” modspec8−1−voice ”
7 ? manual>
8 s t a t e f r e e
9 ==>

10 ! e v a l ! ( s e t− c o g t o o l− p l i s t : d u r a t i o n 1 . 9 : c u r r e n t− f r a m e ” 23
l i s t s c r e e n p e r s o n s l e v e l 1 ” )

11 = goa l>
12 s t a t e ” modspec8−2−voice ” )
13
14 ( spp Think−32−speech : a t 1 . 9 )
15 .
16 .
17 .

From the exported speech ACT-R model speech productions are copied and
pasted into the former touch screen only ACT-R model. The durations in the modal-
ity specific ”think” productions have to be adapted. In order to utilize realistic du-
rations for the preparation of speech input and touch screen input the durations of
real users at the first list screen were analyzed. For both modalities the average
time on the first list screen was extracted from the log files of the experiments. Us-
ing touch screen humans stayed an average time of 1.3 seconds (SD = 0.5) on the
first list screen; using speech input humans stayed an average time of 2.7 seconds
(SD = 0.7) on the first list screen. It has to be mentioned that these times include
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both a reasoning process and the execution of speech or touch input. The execu-
tion of speech and touch input is covered by making use of the ACT-R speech and
motor modules. This execution always takes some time dependent on the length of
the utterance (when using speech) or the actual position of the hand and the char-
acteristics of graphical UI elements (according to Fitts’ law). As a consequence the
time for the reasoning process should be shorter then the average time at the first
list screen. The best values for optimizing the prediction for the RBA design could
be calculated by parameter fitting. However, this would only lead to an adjustment
to the RBA, and can not be generalized for arbitrary systems. A first estimation for
the time for the modality specific reasoning processes is therefore made by subtract-
ing the standard deviations from the means. Considering that the ”think” modality
selection production involves a duration of 0.1 seconds, a duration of 0.7 seconds
is obtained for the ”think” touch production and a duration of 1.9 seconds for the
”think” speech production. The productions in the Listings 5.2 and 5.3 include these
times.

Listing 5.3 ”Think” touch execution ACT-R production generated from the CogTool script

1 ; ; S c r i p t s t e p ” t h i n k ” t o u c h e x e c u t i o n
2
3 ( p Think−74−touch
4 = goa l>
5 i s a klm
6 s t a t e ” modspec8−1−touch ”
7 ? manual>
8 s t a t e f r e e
9 ==>

10 ! e v a l ! ( s e t− c o g t o o l− p l i s t : d u r a t i o n 0 . 7 : c u r r e n t− f r a m e ” 23
l i s t s c r e e n p e r s o n s l e v e l 1 ” )

11 = goa l>
12 s t a t e ” modspec8−2−touch ” )
13
14 ( spp Think−74−touch : a t 0 . 7 )
15 .
16 .
17 .

After the depicted adaptions the multimodal ACT-R model can be run using the
ACT-R cognitive architecture. In these steps where the modality selection process
has been integrated modalities are selected according to the specified input param-
eters. In the other steps originating from the CogTool script the predictions are per-
formed as before. By running the multimodal model several times task solutions
differing in modality selection can be produced. For all these solutions an average
task duration with a standard deviation can be calculated.
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5.2.2 Modeling the Restaurant Booking Application with CogTool

5.2.2.1 System Design

An overview of all frames modeled for the RBA can be looked up in the CogTool
design window in Appendix C.2. Figure 5.11 shows details of the frame ”City 1”.
Two buttons are modeled, one colored orange for browsing through the list of cities,
the other one colored blue (highlighted) for selecting the city ”Aachen”. As depicted
in Section 2.4.1 it is not necessary to integrate input options for interactive elements
that are not used in the task demonstration. CogTool makes predictions of task exe-
cution time for skilled users, therefore only these elements have to be modeled that
are definitely used. All other graphical system states (frames) are modeled similarly
as in this example.

Fig. 5.11 The CogTool frame window for modeling elements of the graphical user interface.
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Transitions between the frames are integrated in the design window. Figure 5.12
shows a detail of the design window. On the right side the properties of the RBA
design can be viewed. The name of the design is ”RBA multimodal”. In Section
5.2.4 also unimodal designs are considered. The frames of the unimodal designs are
the same as in this multimodal example. The designs only differ in the transitions.
The RBA touch design only contains graphical transitions, and the RBA speech
design only contains speech transitions. The RBA multimodal design contains both
types of transitions in one design. All transitions are represented by black arrows.
The graphical transitions connect buttons of a frame with followup frames. At the
bottom of each frame a microphone is provided as a device for speech input. The
speech input transitions connect the microphone of a frame with followup frames.
Once a transition is entered the utterance triggering the transition must be specified.

Fig. 5.12 A detail of the CogTool design window. Start screen and List screens are alternating line
by line. All six list screens of a category are always in a single line.

In order to finalize a design the task of interest already has to be known by the
modeler, as all necessary transitions between the frames of the design have to be
modeled, so that the task can be demonstrated. Therefore the finished design of the
RBA system includes all transitions for the tasks that are examined in this work.
The tasks are further detailed in the next section.
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5.2.2.2 Task Demonstration

In Section 5.2.3 the simulated modality selection behavior is analyzed. The analysis
aims at examining the validity of the integration of the modality selection algorithm.
Therefore it is sufficient to demonstrate a short task containing a modality selection
for touch as well as for speech input and to merge the two unimodal solutions in the
way described above. The variation of the input parameters of the modality selection
algorithm can not be affected within CogTool. The ACT-R simulation also has no
direct influence on the use of the algorithm. The parameters are so far not automat-
ically determined but manually adjusted. To test the performance of the algorithm a
single touch screen of the RBA design is sufficient. Other details of the examination
are depicted in the respective section.

In Section 5.2.4 the total task duration of three specific tasks is predicted with
two different CogTool models and one ACT-R model. Figure 5.13 shows the Cog-
Tool script window for demonstrating a task with the multimodal RBA design. On
the left of the window the current frame is displayed. Tasks can be demonstrated
by clicking on the interactive (orange) elements of the frame. A click on a button
causes a transition to a subsequent frame. The current view of the script window
shows a click on the microphone that opens a context menu as several utterances
have been defined causing different transitions. By selecting one of these utterances
the respective transition is triggered. On the right of the window the script gener-
ated by CogTool is displayed. By graphical or speech input in a frame steps are
added to the script. The example shows the completed script for task 15 includ-
ing the sub tasks: city=”Rostock”, culinary-category=”mediterran”, time=”elf uhr”,
persons=”neunzehn personen”. The steps of the scripts are listed sequentially line
by line from top to bottom. In the columns the used frame, the executed action, and
the used device are displayed. The Think-mod-sel actions are manually integrated as
modality selection steps before each input via a device. Once an input via a device
is made CogTool automatically integrates another ”think” step into the script before
the step for the actual input. In order to be able to better distinguish the ”think”
steps, the names are changed. Each ”think” step for modality selection is followed
by a modality specific ”think” step. In the current view line four including the sec-
ond Think-mod-sel step is selected. The duration of the Think-mod-sel step is set to
0.1 seconds. The durations of the modality specific steps will be changed later in
the ACT-R model. All the three tasks that were used for the performance prediction
were demonstrated in the same way as depicted here for touch screen, for speech
and for multimodal input. The CogTool script for touch screen input and for speech
input provide the basis for the multimodal ACT-R models.

5.2.2.3 Human Performance Model

The ACT-R cognitive architecture is used with its default values. Regarding Fitts’
law the size and the position of the buttons are relevant for the performance predic-
tion. The human performance model needs more time if buttons are smaller and if



www.manaraa.com

96 5 Automated Usability Evaluation of Multimodal Interaction

Fig. 5.13 A detail of the CogTool script window. It has to be noted that the durations of the shown
”think” steps are not the duration that were used for the model predictions.

the distance between the actual finger position and the button is greater. The buttons
for selecting a list category on the start screen are placed one underneath the other
and are same size and orientation. The button for sending the search request is same
size, but is placed further on the left. On the list screens the buttons in the lists also
are placed one underneath the other and are same size and orientation. The forward
backward buttons are same size. The forward button is placed in the lower right
corner and the backward button is placed in the lower left corner.

Regarding speech input the duration of an utterance depends on the number of
characters. The human performance model uses 50 ms per character as an estimate
for how long it takes the user to say something.

5.2.3 Analysis of Simulated Modality Selection Behavior

Similar to Section 5.1.3 in this section the integration of the modality selection
model in ACT-R models generated by CogTool is validated. The baseline for the
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analysis of the modality selection behavior of multimodal ACT-R models are there-
fore the predictions of the modality selection algorithm. These predictions serve as
goal values for the modality selection algorithm that was integrated in the ACT-R
models. Rendered multimodal an ACT-R model decides for a modality according
to the probability calculated by the modality selection algorithm. As a result of the
ACT-R simulations the predicted percentage of speech usage should be approxi-
mately the same as predicted by the algorithm. In order to validate the integration,
in total 36 ACT-R simulations were performed: 6 simulations with different levels of
modality efficiency for each of the 6 experimental conditions of input performance.
Each simulation contains 128 iterations. As in the experiments with real humans
interactions at the first list screen of the RBA were simulated. For each simulation
log data for a specific level of modality efficiency and a specific error condition is
generated. To adjust the error conditions and the levels of modality efficiency the
input parameters of the modality selection function were adapted according to the
experimental conditions.

The ACT-R trace of each simulation is stored in a separate log file. The trace of an
ACT-R model contains the output of the simulation, including the actions and times
of the perceptual-motor modules and the memory modules and other notifications.
The log file of each task is imported into excel where the number of touch-screen
and speech inputs were counted and the percentage of speech usage was calculated.
Figure 5.14 illustrates the results of the simulations. For each error condition a dia-
gram with the prediction results for each level of modality efficiency was produced.

As in the diagrams in the respective MeMo section the data predicted by the
modality selection algorithm is colored dark gray. The runs of these baseline curves
has already been discussed in Section 5.1.3.

The data simulated by the ACT-R model colored in light grey traces the curves
of the modality selection algorithm quite well. The deviations are a result from the
stochastic behavior of the modality selection algorithm. Speech is always selected
with the calculated modality distribution. The sample of 128 simulation runs still
shows in some cases that the total speech usage can be predicted a bit too high or
too low. The overall fit is quite high with an R2 of 0.99 and an RMSE of 0.04. The
values for the single conditions are documented in Table 5.6.

Table 5.6 Performance measures of ACT-R predictions for the validation of the integration of the
modality selection algorithm.

Condition R2 RMSE

[T 00,S00] 0.995 0.040
[T 00,S10] 0.994 0.047
[T 00,S20] 0.996 0.045
[T 00,S30] 0.998 0.054
[T 20,S20] 0.984 0.034
[T 20,S00] 0.991 0.018
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5.2.4 Application Example for the Prediction of Total Task
Duration

The aim of this section is to test the usefulness of the multimodal ACT-R model
generated as depicted in Section 5.2.1. The model contains the modality selection
algorithm that has been developed in this work. As a baseline for the assessment
unmodified CogTool predictions are considered. According to the stepwise proce-
dure for generating the ACT-R code, at first the CogTool specifics of the application
example are depicted. After that ACT-R specifics are described. The results of both
CogTool and ACT-R predictions are finally compared to human data.

5.2.4.1 Specifics of the CogTool Conditions

The application for the prediction of total task duration is a classical example how
CogTool can be used in an usability engineering context within a development stage
where no real prototype is existing. A system designer working on the RBA may
consider to integrate speech input, as speech shortcuts could be implemented in
order to increase the efficiency of the application. At this stage comparable data of
real humans is usually not available. Therefore CogTool predictions could be helpful
in order to guide the designer in making decisions for the interaction design of the
system. It would be useful to compare system designs for touch screen input, speech
input, and multimodal input. Therefore RBA designs and tasks for this example are
created with CogTool as depicted in Section 5.2.2. In order to establish a baseline for
the predictions the task durations are calculated as defined by CogTool meaning that
no additional ”think” steps are integrated and that the duration of the automatically
integrated ”think” steps are not changed. This condition is called CTde f ault .

For another CogTool condition the modality specific durations for speech and
touch screen input, obtained from the empirical data, are used. Additional ”think”
steps for modality selection are demonstrated and the durations are adjusted as in the
ACT-R modification depicted in Section 5.2.1.2. Thus, the resulting CogTool script
contains durations that are oriented on the human data. The analysis will also show
how well these durations handle the differentiation between the reasoning process
and the execution of speech or touch input. As this condition contains the modality
specific durations for modality selection it is called CTms.

Both the condition CTde f ault and the condition CTms are completely feasible with
CogTool. According to the theory underlying CogTool condition CTde f ault deter-
mines the processing time of a skilled user. Regarding modality selection the fol-
lowing interaction strategy was chosen: a skilled user always selects the modality
that leads on with a smaller number of interaction steps; if this number is equal
for touch screen and speech input, touch screen is selected, as touch screen input
usually takes less time and is less error-prone. Thereby the selection of a modality
requires no time for the skilled user.
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In contrast, with respect to modality selection condition CTms uses other dura-
tions, obtained from the RBA experiments with real users. The subjects in the RBA
experiments were no skilled users. However, the task to be performed was fairly
easy. Particularly the modality selections may require decisions that are new or at
least not yet practiced for most participants. In this work it is assumed that addi-
tional or adapted reasoning processes cause effort on the part of the users, resulting
in longer durations for interaction steps including modality selections. The duration
of a CogTool default ”think” step is 1.2 seconds. As already described in Section
5.2.1.2 the experiments revealed for the RBA that touch screen input takes 0.8 sec-
onds and speech input 2.0 seconds. Apart from the changes regarding the durations,
the interaction strategy of the skilled user is utilized. Therefore for the predictions
with CTms higher values for total task duration can be assumed at least for the tasks
with high modality efficiency of speech input.

5.2.4.2 Specifics of the ACT-R Condition

The multimodal ACT-R model integrating the modality selection algorithm is based
on the CogTool condition CTms. The CogTool scripts are generated by the touch
and the speech versions of the RBA. All adaptions are made as depicted in Sec-
tion 5.2.1.2. In these steps where the modality selection process has been integrated
modalities are selected according to the specified input parameters. In the other steps
originating from the CogTool where touch screen or speech input is performed noth-
ing has been changed. By running the multimodal model several times task solutions
differing in modality usage can be produced. For all these solutions an average task
duration with a standard deviation can be calculated.

The ACT-R models are run 128 times. The ACT-R trace of each model is stored
in a separate log file. The trace of an ACT-R model contains the output of the sim-
ulation, including the actions and times of the perceptual-motor modules and the
memory modules and other notifications. The log file of each task is imported into
excel where the total task durations are filtered and means and standard deviations
are calculated.

5.2.4.3 Results

Figure 5.15 shows the results of the CogTool performance predictions for both cre-
ated conditions, CTde f ault and CTms. The touch screen based, the speech based, and
the multimodal design are compared to each other.

It should be noted again that the modality efficiency of speech increases between
the tasks. Figure 4.1 summarizes the assignment of speech benefits to tasks. The
modality efficiency of speech steadily increases between the tasks except for a small
exception in Task 10. For the touch screen design, a high speech benefit means
that multiple touch screen interaction steps are required for the task. The higher
the speech benefit, the more touch screen interaction steps are needed. Regarding
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Table 5.7 ACT-R Vs Human data Vs CogTool.

Data Task M SD M (corr) SD (corr)

Human 4 16.4950 2.778
ACT-R 4 18.000 1.583
CTde f ault 4 14.2 -
CTms 4 14.1 -
Human 10 17.862 3.194
ACT-R 10 20.908 1.708
CTde f ault 10 16.4 -
CTms 10 17.6 -
Human 15 23.000 9.581 18.405 3.265
ACT-R 15 20.306 2.090
CTde f ault 15 15.8 -
CTms 15 17.0 -

behavior was also observed in the CogTool predictions. The difference may again
result from the way ACT-R calculates the duration of the utterances for speech input.

The standard deviations of the ACT-R simulation are consistently slightly smaller
then the standard deviation in human data. The average total task completion time
predicted with ACT-R is within the standard deviation of the human data for all
tasks. Further the ACT-R averages are consistently higher then the averages of hu-
man data. At worst task 10 is predicted, where the average total task completion
time predicted by ACT-R is about 3 seconds higher than the average of human data.
Apparently the differentiation between modality specific ”think” step (also referred
as the reasoning process) and the execution of speech or touch input is so far not op-
timally adjusted. A better fit to human data should be possible by parameter fitting
for the respective durations.

It is correct that the CogTool predictions provide shorter total task completion
times than the human data. CogTool predicts the performance of skilled users, how-
ever, the participants were not experts in using the system. Regarding the ACT-
R simulation the durations of the modality specific ”think” steps and the ”think”
modality selection step are adjusted to human data. As a consequence the ACT-R
model does not predict the performance of skilled users according to the theory un-
derlying CogTool. Only for the execution of user input the ACT-R model still uses
the same mechanisms as CogTool. The CogTool predictions rather provide a lower
limit for the ACT-R simulation. The tasks that were demonstrated by the modeler
using CogTool can be seen as the best solution, commonly with the shortest possi-
ble total task execution time. During several iterations the ACT-R simulation also
finds a best solution. However due to its stochastic behavior the multimodal simula-
tion also finds other solutions with higher total task execution times. It is therefore
correct that the ACT-R simulation provides a longer total task execution time than
CogTool. The reason why the ACT-R predictions are consistently higher then the
human data can be attributed to the above mentioned adjusted durations.
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All in all, the results of performance prediction are plausible. The further discus-
sion of the results will take place in Section 5.2.5.

5.2.4.4 CogTool Reports

Additionally to the results for the performance predictions, CogTool delivers a vi-
sualization of the ACT-R simulation (see also Section 2.4.5). The aim of this report
is to gain insights into the efficiency of the designs and the activities of the single
ACT-R modules. The CogTool report feature can only be utilized for tasks that were
directly created with CogTool. It is not possible to import the results of the mul-
timodal ACT-R simulation that was performed within the multimodal procedure.
However the ACT-R runtime environment provides comparable features. The pos-
sibility of displaying and browsing through the activities of the ACT-R simulation
provides details about the perception and the interactive behavior of the simulated
user. For each frame of the design and for each ACT-R buffer details about starting
time, duration, and end time can be viewed.

Fig. 5.17 The CogTool report window.

Figure 5.17 shows an example comparing two task demonstrations to each other.
The task at the top is solved with the RBA touch screen design, while the task at
the bottom is solved with the RBA speech design. At the top and at the bottom of
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the report window an overview of the tasks is shown. The area marked in red in this
overview represents the section that is shown below or above the overview. At the
top of each section a timeline allows a rough chronological classification of the un-
derlying actions of the cognitive architecture. In the first row under the timeline the
frames of the design are represented. Comparing the first frame of two tasks it can
be observed that the duration in the start screen is longer in the speech design. This
difference can be mainly attributed to the different durations of the modality specific
”think” productions, which can be verified in the row named cognition. Below the
cognition row in the upper task (with the touch screen design) the movement of the
right hand is represented in red as an input action. The single actions in this line dif-
fer in duration. Here Fitts’s law comes into play calculating the durations to select
the elements in the UI depending on the size of the target and the distance between
the target an the hand. Above the cognition row the visual encoding, and the exe-
cution and preparation of eye movements is represented. In the lower task (with the
speech design) the input action is represented in the row named ”Say Exec”. In the
example the utterance ”Stadt” is performed. The duration of the utterances is cal-
culated by ACT-R. It is notable that the theory in this case does not simulate visual
encoding and eye movement. After the input actions in the two different tasks the
frame row changes to the frame 02 listscreen city level1 which represents the first
list screen of the city list of the RBA. The sequence of the individual ACT-R actions
is similar to the previous screen. It is notable that in the upper task the duration of
the first and the second frame taken together are almost as long as the duration of
first frame of the lower design. Again this can be attributed to the modality specific
”think” productions. After the second speech input in the second frame the simu-
lated user gets back into the start frame, having selected the right city, while using
touch screen the simulated user is still browsing through the list. Here the benefit of
speech input, respectively the higher modality efficiency of speech takes effect.

5.2.5 Discussion

The multimodal procedure utilizing ACT-R models generated with CogTool in order
to create multimodal ACT-R models works. The analysis of the simulated modality
selection behavior of multimodal ACT-R models revealed that the modality selec-
tion algorithm is correctly implemented in those models.

The duration defined in the CogTool ”think” steps are a sticking point for the ac-
curacy of the prediction results. However, the precise prediction of processing times
is not a key issue in this work. It rather indicates how the modality selection algo-
rithm can be employed. Therefore no parameter fitting was executed with respect to
the durations. Through another fitting the durations may be strongly adapted to the
RBS system. A generality of the results would thus not be given. It would be impor-
tant to collect data with other systems to verify the external validity of the simula-
tion. For the ACT-R simulation this would be important in two respects: firstly, the
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external validity of the modality selection needs to be tested, secondly the modality
specific durations should be substantiated by further empirical findings.

The multimodal procedure shows that simulations are possible with ACT-R mod-
els, created by CogTool, and being expanded to show details of multimodality. For
the designer in particular the extension of the ACT-R models is a difficult and time
consuming task. An extension of CogTool, directly integrating modality selection,
should be possible with reasonable effort. The integration of a ”think” modality se-
lection step could be implemented similar to the integration of a ”Look at step”.
In contrast to the previous prediction, based on a demonstration of a touch screen
solution and a demonstration of a speech input solution, a simulation with multi-
ple iterations would be possible generating different solution paths with different
interaction times.

Further research is needed for a realistic indication of times for reasoning pro-
cesses. The results of the RBA experiments show that a time of 1.2 seconds, which
is used by CogTool by default, may not fit for arbitrary modalities. For the process of
modality selection other durations are possibly more appropriate. Whether a ”think”
modality selection step should be provided with a duration, or whether all durations
should be included in ”modality specific steps” would have to be clarified by further
research. Thereby also the time for preparing an utterance for speech input has to
be further investigated. By changing the durations of the ”think” modality specific
steps also the standard deviation of human data could be better reproduced. In the
next section a comparison between MeMo and CogTool is drawn.
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5.3 Comparison of MeMo and CogTool Simulations

In this section MeMo and CogTool are compared to each other on the basis of the
attributes described in Section 2.2.4 including the classification by means of a tax-
onomy, subjective assessment, and common performances measures. With regard to
the classification and the subjective assessment, attributes suggested by Ivory and
Hearst (2001) are adapted.

5.3.1 Classification of the Tools

5.3.1.1 Method Class and Type

Both, MeMo and CogTool, can be assigned to the method class simulation. Using
MeMo user, task and system models to mimic a user interacting with an interface
are utilized. The user model is based on the MHP (Card, 1981). The results of the
interaction are multiple interaction paths through the system graph that can also be
visually explored in the MeMo workbench. For further processing of the data the
simulated activities can be exported into log files. As a special feature a PDF report
can be exported including several quantitative measures. MeMo further integrates a
HTML import functionality.

Using CogTool system designs and task demonstrations to mimic a user inter-
acting with a interface are utilized. The user model employs a GOMS-like model
realized with the cognitive architecture ACT-R (Anderson et al., 1997). The results
of the interaction are performance predictions for skilled users. The generated ACT-
R models can also be visually explored in CogTool. For further processing of the
data the simulated activities can be exported into log files. The performance mea-
sures of multiple alternative designs with demonstrated tasks as well as the ACT-R
models can be exported. CogTool further integrates a HTML import and export
functionality.

5.3.1.2 Automation Type

Both, MeMo and CogTool, support the analysis of recorded data. By means of
MeMo potential usability problems can be identified. During multiple iterations of
a specific task different solutions for the task are found. The user model thereby can
lose the optimal path. Missing error recovery strategies can then lead to outliers in
the data uncovering interaction problems. The simulation outcome is dependent on
the modeled system, task, and user group. The software so far can not automatically
suggest improvements from the analysis. Multimodal simulations are automatically
possible with MeMo.

By means of CogTool performance predictions for skilled users can be made.
A modeler demonstrates a task and CogTool automatically generates a script that
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is translated into the ACT-R cognitive architecture by pressing a button. The sim-
ulation outcome is dependent on the modeled design and task. The software only
follows the demonstrated path and can so far not automatically suggest improve-
ments. Multimodal simulations are so far not automatically possible with CogTool.
In order to simulate multimodal interaction the multimodal procedure depicted in
Section 5.2 has to be performed.

5.3.1.3 Effort Level

As mentioned in Section 2.2.4 the levels of effort suggested by the taxonomy are
not necessarily ordered by the amount of effort required. The actual amount of ef-
fort depends on the method employed Ivory and Hearst (2001). Both, MeMo and
CogTool, require the development of a system model and a task model. For both
approaches the underlying user model can be used without special effort. However,
the actual effort to create the models varies considerably. Especially using MeMo
higher effort has to be spent for the creation of the system model. In order to en-
able the MeMo simulation information from the task model has to be transferred
to the system model. Therefore it is necessary to explicitly specify the change of
the values of single attribute value pairs of the system to perform a certain transi-
tion. The information must therefore be specified twice in the task knowledge and
in the transitions of the system. This work must be done manually and is therefore
time-consuming and error-prone.

CogTool in contrast, requires less effort to create the system design. After a task
is demonstrated no further information must be specified in order to enable the per-
formance predictions. However, applying the multimodal procedure also for Cog-
Tool the effort increases considerably. Besides the creation of the required basic
ACT-R models with CogTool, these models must then be changed in Lisp in order
to enable the multimodal simulation in the ACT-R runtime environment. These steps
require a considerable amount of time and expertise.

5.3.2 Subjective Assessment

Regarding the RBA simulation with MeMo a usability problem was uncovered:
when the user model accidentally entered a wrong list it was not able to carry on
appropriately as the user interface does not contain a back button for leaving the
list without selecting one of the list items. This should be changed before the real
system is implemented. In so far effectiveness may be attributed to MeMo. Referring
to the performance predictions effectiveness can also be attributed to CogTool and
the multimodal ACT-R simulations. As it could be expected the CogTool predictions
were below the human data and the ACT-R predictions above the CogTool data.

Ease of use can only be attributed to CogTool. Creating a design and demonstrat-
ing a task works relatively easy and fast. As already described for the effort level,
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MeMo and the multimodal ACT-R simulation are not as easy to employ. However,
the proper application of MeMo should be easy to learn, in comparison to the ex-
pertise which is necessary to adjust the Lisp-based ACT-R models.

Regarding applicability both tools are applicable for a wide range of systems.
The applications ranges from spoken dialog systems over WIMP and Web UIs to
smartphones applications, and others like remote controls.

5.3.3 Goodness of Fit

The results for the goodness of fit are extremely good with R2 = 0.98 and RMSE =
0.03 for MeMo and R2 = 0.99 and RMSE = 0.04 for CogTool and differ only
slightly from each other. The reason for the good results and the small difference is
that the tools were used for the prediction of data with which the modality selection
algorithm was trained. This was done deliberately in order to test the correctness
of the implementations and to find out how well the predictions of tools fit to the
predictions of the bare algorithm.

5.3.4 Discussion

The classification by means of the taxonomy, the subjective assessment, and the
goodness of fit measures reveal that MeMo and CogTool in combination with the
multimodal ACT-R simulation, encounter on an equal footing in all disciplines.
Method class and method type serve for the classification of the tools showing
that the tools per se have different fields of application. MeMo finds different in-
teractions paths through a system model and provides clues to potential usability
problems, while CogTool predicts the total task execution times of skilled users.

The modeling of information in MeMo requires some practice. For simple tasks
it would be desirable to transfer information such as UI button labels automatically
as an information if a button is pressed. The button labels are often used in the task
knowledge. Therefore modeling effort could be saved.

An important difference between the tools is, that in MeMo the selection of in-
teractions during the simulation is based on probabilities. The actual interaction
steps are automatically calculated depending on the task and interface description,
instead of being pre-defined by the modeler as in CogTool. However, in CogTool no
information like variables and consequences of transitions have to be defined. Nev-
ertheless, the effort in MeMo can be worthwhile for evaluators who want to discover
possible usability problems by simulation. MeMo automatically finds different so-
lutions for the task while in CogTool each single solution has to be demonstrated.

The multimodal ACT-R simulation, based on models that were created by Cog-
Tool, requires a considerable amount of expertise. This additional effort could be
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reduced if the necessary functionalities are directly integrated into CogTool, as pro-
posed in Section 5.2.5.

The different specialization speaks against the fusion of the tools in a single tool.
Instead, the compatibility of MeMo system models and CogTool system designs
would be desirable. System models of MeMo could be imported into CogTool and
used directly. For CogTool designs, conversely, the same should be possible. By
means of the MeMo simulation interaction paths could be found, which are con-
verted into CogTool scripts. This would allow to start from a more general user
knowledge, which is defined in MeMo. Solutions generated by MeMo are trans-
lated into CogTool scripts enabling CogTool to predict the processing times.

The existing HTML import features represent a possible starting point for such a
product chain. However, the suitability of HTML is questionable due to the degrees
of freedom in the HTML creation. It might be better to define a different format to
make the created models usable in both tools. Through the existing HTML export
feature CogTool fits better in the software development process. Designs created
with CogTool can thus be converted into first interactive prototypes that can be
tested by real users. For both tools compatibility with modern interaction design
tools would also be desirable.

5.4 Chapter Summary

This chapter exemplified the practical application of the modality selection algo-
rithm developed in Chapter 4. The integration of the algorithm required several ex-
tensions under the hood of MeMo. The modality selection behavior showed good
results. However, the whole task had to be split into smaller parts as memory is-
sues arose during the simulation. The prediction of the number of interaction steps
showed useful results. An interaction problem, namely the lack of a back button,
could be detected. Certain user strategies, like using touch screen only, are not cov-
ered by the model, and can therefore cause deviations between human and model
data.

Regarding the multimodal procedure utilizing CogTool in combination with ad-
ditional ACT-R simulations the modality selection behavior showed also good re-
sults. The duration defined in the CogTool Think steps as well as the modality spe-
cific durations should be substantiated by further empirical findings. The extension
of the ACT-R models is a difficult and time consuming task that could be overcome
if the modality selection algorithm is integrated into the CogTool simulation. A real-
istic indication of times for reasoning processes of modality selection needs further
research.

The tool comparison reveals that both tool have their strengths and weaknesses.
The tools per se have different fields of application. If a comprehensive analysis
based on AUE methods should be conducted both tools can be used in sequence. At
first different interaction paths for a task could be found using MeMo, and after that
the total task execution times of single path could be predicted using CogTool.
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Chapter 6
Summary and Outlook

6.1 Summary

Future developments in HCI will enable sequential independent multimodal systems
(SIMS), thereby enabling free choice of input modalities. Users’ modality choice
is moderated by various factors. The motivation of this work was to examine the
factors of input performance and modality efficiency and to build a model enabling
the prediction of modality usage. The usefulness of the model was demonstrated by
the deployment in the AUE tools MeMo and CogTool.

The foundations of the work were laid in Chapter 2 starting with an introduction
to multimodal interaction including theories of human decision making, and to the
topic of automated usability evaluation. Further the two AUE tools MeMo and Cog-
Tool were introduced. Finally the research questions of the work were formulated.

In three experiments the empirical results reported in Chapter 3 reveal that users
of multimodal systems adapt modality usage to estimated modality efficiency as
well as to input performance of modalities. On the one hand, speech input is in-
creasingly preferred if speech gets more efficient in terms of interaction steps. On
the other hand, the usage probability of a modality decreases if its input perfor-
mance is limited (e.g., due to ASR errors or touch screen malfunction). Previous
research, mostly in line with these findings, revealed rather discrete insights into
the continuum of parameters influencing modality choice (Bilici et al., 2000; Wech-
sung et al., 2010). The presented series of experiments describes the relationships
of multiple factor levels and gives a coherent idea about essential moderators of
modality choice. The empirical results turned out to be consistent across experi-
ments. The empirical findings answer the first research question RQ1: significant
effects of modality efficiency and input performance on modality selection in mul-
timodal HCI can be disclosed by unified experimental investigations.

The presented theoretical foundations and the observed user behavior inspire a
utility theory-driven model that is derived in Chapter 4. The model forecasts an av-
erage users’ modality choice behavior with considerable predictive power. A model
comparison revealed that an integrative model that incorporates data about all avail-
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able input performance conditions is qualified for beneficial estimations of modality
usage. Particularly high prediction performances on unseen data and on conditions
resting on sparse data indicate reliability of the integrative model. If individual sub-
ject data is predicted, substantial variances in individual modality usage profiles lead
to decreased accuracy. Individual users appear to have different interaction strate-
gies than those demonstrated by the model. An application example showed that
the model is able to simulate plausible interaction between an average user model
and a system model. Predicted average speech usage is mostly in line with human
data. The simulation was realized as a state machine, which is a common concept
in the AUE area. The modality selection mechanism can therefore beneficially ex-
tend existing AUE tools. A utility-driven computational model of modality selection
could be formed based on the empirical data, which provides an answer for research
question 2 (RQ2).

The the utilization of the modality selection model for the MeMo workbench
and for CogTool based simulations is presented in Chapter 5. The multimodal ex-
tension of the MeMo workbench was documented and the creation of a multimodal
system model of the RBA was outlined. Compared to the predictions of the bare
algorithm the modality selection behavior of the MeMo simulations showed good
results. The corrected predictions of the total number of interaction steps of three
tasks with different modality efficiency provide useful results for two different error
conditions. In combination with the MeMo reports the prediction results provided
valuable insights into the usability of multimodal interaction. The reports revealed
realistic modality usage as well as different possible interaction strategies. The un-
corrected prediction include interaction errors of the model indicating a usability
problem of the RBA: within the list screens a back button is missing.

Regarding CogTool the development of a multimodal procedure is documented
combining a touch screen ACT-R model and a speech ACT-R model generated by
CogTool into one multimodal ACT-R model. The multimodal model is augmented
with the modality selection algorithm. The modeling of the RBA with CogTool and
the adaptions made to the multimodal ACT-R model are outlined. Also for the Cog-
Tool based predictions of modality selection the comparison to the predictions of
the bare algorithm showed good results. The usefulness of the multimodal ACT-
R model was illustrated by an application example for the prediction of total task
duration. CogTool was used to generate baseline predictions that were compared
to human data and the predictions of the multimodal ACT-R model. In combina-
tion with the CogTool reports the prediction results provided valuable insights into
the usability of multimodal interaction. The results revealed realistic performance
predictions. Further the ACT-R simulation provides several automatically generated
task solutions which would have to be demonstrated manually with CogTool.

Both tools have been compared by means of a taxonomy, subjective assessment,
and common performances measures. The results showed that both tools encounter
on an equal footing in all disciplines and that the tools per se have different fields
of application. It was concluded that the usage of both tools in sequence could be
valuable if a comprehensive analysis based on AUE methods should be conducted.
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The utilization of the derived model for modality selection in MeMo and CogTool
answered research question 3 (RQ3).

6.2 Discussion and Future Work

For a designer of multimodal user interfaces AUE simulations provide working
knowledge about the modality usage to be expected. As the model acceptably ap-
proximates the effects of modality efficiency and input performance, other factors
of interests can be brought into the designers’ attention. By means of simulation,
variants of multimodal interfaces can easily be compared. Optimizing the multi-
modal interface design in very early stages of system development will save time
and monetary costs, as design errors and usability issues can be addressed without
user testing before a real prototype is available. Further interaction log data enables
usability predictions for future multimodal systems. Relevant information for the
typical system design question ”(where/how) should speech input be integrated?”
can be gathered.

Individual users appear to have different interaction strategies than those demon-
strated by the model. The investigation of modality usage patterns could expose
user groups that differ in interaction strategies. By deploying specialized models
for these groups individual differences between users could be taken into account.
Further, hedonic quality, context, and other factors like the ones described in Sec-
tion 2.1.3 provider areas for the extension of the model. Concerning system errors
it has to be noted that the error rate perceived by a system user can be very different
from the real error rate and can further change over time. These factors were not
considered in the studies outlined in this work and should therefore be part of future
research.

So far the model lacks a rigorous explanation of how the benefit of speech usage
is derived from the task information and the interface. Effects of subtasks on each
other and the interplay between task and system should be part of future research.

The wide field of multimodal systems offers several possibilities for improving
the model. An expansion to other modalities will be needed, since, for example,
non-contact gesture or gaze interaction and other input methods will increasingly
emerge in the future. From a technical point of view the model is able to deal with
arbitrary modalities, as long as it can be assumed that perceived utility determines
modality usage. Looking beyond the simplified list-browsing task, novel interac-
tion techniques like flick gestures allowing quickly scrolling through lists have to
be taken into account. Furthermore, the number of input modalities should be ad-
justable within the model. However, much more data will be needed to fit these
special conditions.

The combination of modalities, demonstrated by Bolt’s long established ”put-
that-there” paradigm (Bolt, 1980), should be considered. Combining modalities will
disclose a vast number of new conditions for the model that are feasible if the neces-
sary data for parameter fitting is available. A difficulty will be that interaction steps
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are not easy to calculate for modern user interfaces integrating advanced interaction
techniques.

In the field of automatic usability evaluation, typically the interaction with newly
designed system models is simulated. The model’s extrapolation performance to
other systems has so far not been tested. The Restaurant Booking Application (RBA)
was a prototypical use case and portability to other systems and tasks has to be
demonstrated to disclose the validity of the model. Note as well that the user in-
terface of the RBA is not the most efficient one. More efficient interfaces for both
modalities could be provided by using different and optimized GUI components
and a more natural speech interface. For improving the efficiency of interaction,
multimodal systems often integrate mechanisms for multimodal error correction or
context-specific ASR grammars, concepts so far not covered by the model. Further-
more, it should be possible to facilitate the model for other tasks allowing speech
shortcuts, such as ”keyword typing” or ”speaking for searching” inside a database.
The question arises if a data driven approach will scale in the future. One possibility
to overcome this issue could be to investigate whether the utility-driven approach
can be supported by insights referring to cognitive modeling and to other modera-
tors of modality choice.

With respect to the used AUE tools MeMo and CogTool also a number of possi-
bilities for improving the tools arise. A standardized import and export functionality
would be valuable in order to enable a product chain making use of the strength of
each single tool. Furthermore, the compatibility to existing interaction design tools
and integrated development environments would be useful. By improving integra-
tion into the software development process, the acceptance and awareness of AUE
could be increased.
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Neumann, H., Pieraccini, R., and Weber, M., editors, Perception in Multimodal
Dialogue Systems, volume 5078 of Lecture Notes in Artificial Intelligence, pages
37–43. Springer, Heidelberg, Germany.

Nickel, P., Eilers, K., Seehase, L., and Nachreiner, F. (2002). Zur Reliabilität,
Validität, Sensivität und Diagnostizität von Herzfrequenz-und Herzfrequenzvari-
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A.1 Start screen of the RBA

Fig. A.1 Start screen with no list items selected.
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A.14 Tasks and task construction

A.14.1 Training Tasks of Experiment 2

1. Bitte suchen Sie ein Fischrestaurant in Kiel, ab 20:00 Uhr fr 10 Personen.
2. Bitte suchen Sie ein Sushi-Restaurant in Mnchen, ab 21:00 Uhr fr zwei Personen.
3. Bitte suchen Sie ein orientalisches Restaurant in Dortmund, ab 13:00 Uhr fr 18

Personen.

The first task processing was carried out unimodal only via the touch screen.
The second task processing was carried out unimodal only via speech input. The
third task processing was carried out multimodal. The participants could at any time
choose between touch screen and speech input.

A.14.2 Target Trials of Experiment 1 and 2

The order of the target trials was systematically varied. Thus, each participant had
an individual task order.

1. Bitte suchen Sie ein Restaurant mit brasilianischer Kche in Augsburg, ab 12:00
Uhr fr zwei Personen.

2. Bitte suchen Sie ein Bio-Restaurant in Berlin, ab 16:00 Uhr fr vier Personen.
3. Bitte suchen Sie ein Restaurant mit chinesischer Kche in Dortmund, ab 18:00

Uhr fr fnf Personen.
4. Bitte suchen Sie ein Restaurant mit amerikanischer Kche in Dsseldorf, ab 17:00

Uhr fr drei Personen.
5. Bitte suchen Sie ein Restaurant mit deutscher Kche in Bremen, ab 13:00 Uhr fr

vier Personen.
6. Bitte suchen Sie ein Restaurant mit griechischer Kche in Erfurt, ab 20:00 Uhr fr

neun Personen.
7. Bitte suchen Sie ein Restaurant mit italienischer Kche in Kln, ab 0:00 Uhr fr

vierzehn Personen.
8. Bitte suchen Sie ein Fischrestaurant in Hamburg, ab 21:00 Uhr fr zehn Personen.
9. Bitte suchen Sie ein Restaurant mit indischer Kche in Frankfurt, ab 20:00 Uhr fr

zehn Personen.
10. Bitte suchen Sie ein Restaurant mit japanischer Kche in Hannover, ab 22:00 Uhr

fr 13 Personen.
11. Bitte suchen Sie ein Restaurant mit mexikanischer Kche in Leipzig, ab 07:00 Uhr

fr 17 Personen.
12. Bitte suchen Sie ein Sushirestaurant in Stuttgart, ab 11:00 Uhr fr 22 Personen.
13. Bitte suchen Sie ein Restaurant mit portugiesischer Kche in Mnchen, ab 10:00

Uhr fr 18 Personen.
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14. Bitte suchen Sie ein Restaurant mit russischer Kche in Mannheim, ab 11:00 Uhr
fr 20 Personen.

15. Bitte suchen Sie ein Restaurant mit mediterraner Kche in Rostock, ab 11:00 Uhr
fr 19 Personen.

In experiment 1 the participants did not perform explicit training trials. There-
fore, the first three tasks of target trials were treated tasks as training trials, and
therefore left out in the calculation of the average modality selection.

A.14.3 Training trials of experiment 3

1. Suchen Sie ein Fischrestaurant in Kiel ab 20:00 Uhr für 10 Personen.
2. Suchen Sie ein Sushi-Restaurant in Wiesbaden ab 21:00 Uhr für 2 Personen.
3. Suchen Sie ein orientalisches Restaurant in Dortmund ab 13:00 Uhr für 18 Per-

sonen.

The first task processing was carried out unimodal only via the touch screen.
The second task processing was carried out unimodal only via speech input. The
third task processing was carried out multimodal. The participants could at any time
choose between touch screen and speech input.

A.14.4 Target trials of experiment 3

The order of the target trials was systematically varied. Thus, each participant had
an individual task order.

1. Suchen Sie ein Restaurant mit amerikanischer Küche in Freiburg ab 16:00 Uhr
für 13 Personen.

2. Suchen Sie ein Restaurant mit griechischer Küche in Erfurt ab 20:00 Uhr für 9
Personen.

3. Suchen Sie ein Restaurant mit mediterraner Küche in Bremen ab 10:00 Uhr für
6 Personen.

4. Suchen Sie ein Restaurant mit chinesischer Küche in Dortmund ab 18:00 Uhr für
5 Personen.

5. Suchen Sie ein Restaurant mit indischer Küche in München ab 01:00 Uhr für 21
Personen.

6. Suchen Sie ein Restaurant mit portugiesischer Küche in Stuttgart ab 11:00 Uhr
für 22 Personen.

7. Suchen Sie ein Restaurant japanischer Küche in Düsseldorf ab 22:00 Uhr für 4
Personen.

8. Suchen Sie ein Restaurant mit brasilianischer Küche in Augsburg ab 12:00 Uhr
für 2 Personen.
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9. Suchen Sie ein Restaurant mit deutscher Küche in Rostock ab 13:00 Uhr für 18
Personen.

10. Suchen Sie ein Restaurant mit italienischer Küche in Kln ab 00:00 Uhr für 14
Personen.

11. Suchen Sie ein Restaurant mit russischer Küche in Hannover ab 06:00 Uhr für
10 Personen.

12. Suchen Sie ein Restaurant mit mexikanischer Küche in Leipzig ab 07:00 Uhr für
17 Personen.
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A.15 Examination of the statistical criteria

A.15.1 Experiment 1

A.15.1.1 Distribution form of the dependent variable

Table A.1 Characteristic values for checking the distribution of the dependent variables. The table
gives the descriptive characteristics of the distributions and sizes for testing the normal distribution
using the Shapiro-Wilk test; ∗p < .05.

Dependent variable M s Skew Kurtosis Shapiro-Wilk df p

Speech LD 1 .56 0.37 -0.19 -1.45 .879 16 < .000∗

Speech LD 2 .78 0.32 -1.30 0.29 .721 16 < .000∗

Speech LD 3 .88 0.25 -2.57 6.26 .563 16 < .000∗

Speech LD 4 .89 0.25 -2.45 6.01 .603 16 < .000∗

Speech LD 5 .90 0.23 -2.71 9.28 .641 16 < .000∗

Speech LD 6 .92 0.22 -2.84 9.83 .507 16 < .000∗

A.15.1.2 Homogeneity of error variances (Levene test)

Table A.2 Levene test to check the homogeneity of variances; ∗p < .05.

Dependent variable F df1 df2 p

Speech LD 1 5.709 3 14 .002∗

Speech LD 2 6.704 3 14 .001∗

Speech LD 3 6.782 3 14 .001∗

Speech LD 4 2.126 3 14 .111
Speech LD 5 1.660 3 14 .189
Speech LD 6 1.304 3 14 .285
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A.15.2 Experiment 2

Fig. A.14 Kolmogorov-Smirnov Test. Distribution form of the dependent variable.
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A.15.3 Experiment 3

A.15.3.1 Distribution form of the dependent variable

Table A.3 Characteristic values for checking the distribution of the dependent variables. The table
gives the descriptive characteristics of the distributions and sizes for testing the normal distribution
using the Shapiro-Wilk test; ∗p < .05.

Dependent variable M s Skew Kurtosis Shapiro-Wilk df p

Speech LD 1 .58 0.36 -0.18 -1.49 .878 48 < .000∗

Speech LD 2 .76 0.30 -1.30 0.61 .776 48 < .000∗

Speech LD 3 .81 0.27 -1.68 2.26 .764 48 < .000∗

Speech LD 4 .85 0.25 -2.17 4.37 .645 48 < .000∗

Speech LD 5 .84 0.27 -1.79 2.80 .728 48 < .000∗

Speech LD 6 .86 0.27 -2.02 3.52 .664 48 < .000∗

A.15.3.2 Homogeneity of error variances (Levene test)

Table A.4 Levene test to check the homogeneity of variances; ∗p < .05.

Dependent variable F df1 df2 p

Speech LD 1 1.462 3 44 .238
Speech LD 2 7.481 3 44 .000∗

Speech LD 3 5.879 3 44 .002∗

Speech LD 4 2.466 3 44 .075
Speech LD 5 2.798 3 44 .051
Speech LD 6 4.792 3 44 .006∗
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B.1 RBS MeMo System Model

Fig. B.1 The RBA system model.
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B.2 RBS MeMo System Model Detail

Fig. B.2 Detail ”city list” of the RBA system model.
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B.3 MeMo Default User Model

Fig. B.3 The default user model in the user model designer.
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B.4 MeMo HCI Swoosher Properties

Fig. B.4 HCI swoosher properties.
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B.5 MeMo Modality Selection Properties

Fig. B.5 Modality selection properties.
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B.6 MeMo Solution Path Calculator Properties

Fig. B.6 Solution path calculator properties.
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B.7 MeMo User Interaction Model Properties

Fig. B.7 User interaction model properties.
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B.8 MeMo Reports - with low Interaction Probability

Fig. B.8 A MeMo report showing a low probability for an interaction.
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B.9 MeMo Reports - with high Interaction Probability

Fig. B.9 A MeMo report showing a high probability for an interaction.



www.manaraa.com



www.manaraa.com

Appendix C
CogTool Modelling Details

C.1 Lisp Implementation of the Modality Selection Algorithm

Listing C.1 Think modality selection ACT-R production generated from the CogTool script

1 ; ; ; The ACT−R model i n t h i s f i l e i s merged from two models . The
o r i g i n a l model

2 ; ; pe r fo rmed GUI i n t e r a c t i o n o n l y . The o t h e r model a l s o per fo rmed
VUI i n p u t .

3 ; ; A f t e r merging t h e models s t a t e s l o t s i n s i d e t h e p r o d u c t i o n s
were adapted , so

4 ; ; t h a t bo th m o d a l i t i e s are a v a i l a b l e f o r s y s t e m i n p u t .
5 ; ; The f u n c t i o n below i s used t o s e l e c t one o f t h e m o d a l i t i e s .
6 ; ; S t e f a n S c h a f f e r
7 ( s e t f ∗ r andom− s t a t e∗ ( make−random−state t ) )
8 ( defun se lec t−mod ( i−v i− t e−v e−t )
9 ( l e t ( g−v g−t c a b p )

10 ( s e t f g−v 1 . 2 4 1 0 6 2 3 8 )
11 ( s e t f g−t 3 . 1 8 0 7 8 4 8 1 )
12 ( s e t f c 1 . 4 9 3 3 6 9 3 5 )
13 ( s e t f a (∗ (∗ i− t i− t ) (+ 1 (∗ −1 e−v ) (∗ −1 (∗

e−v g−v ) ) (∗ (∗ e−v e−v ) g−v ) ) ) )
14 ( s e t f b (∗ (∗ i−v i−v ) (+ 1 (∗ −1 e−t ) (∗ −1 (∗

e−t g−t ) ) (∗ (∗ e−t e−t ) g−t ) ) ) )
15 ( s e t f p ( / 1 (+ 1 (∗ c ( / b a ) ) ) ) )
16 ( i f (>(random 1 . 0 ) p ) ” t o u c h ” ” v o i c e ” ) ) )
17
18 ( defun do− i t ( n )
19 ( dot imes ( i n )
20 ( cogtool− run−model )
21 ( r e s e t ) ) )
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C.2 The CogTool Design of the RBA

Fig. C.1 Graph of the multimodal CogTool RBA design.
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C.3 CogTool Project Window

Fig. C.2 CogTool project window - overview over designed systems, demonstrated tasks, and
performance predictions.

C.4 Results of the CogTool Ppredictions

Table C.1 Results of the CogTool predictions.

Condition Tasks RBA
touch speech multimodal

CTms 4 13.9 23.4 14.1
CTms 10 23.5 24.2 17.6
CTms 15 30.9 23.5 17.0
CTde f ault 4 18.5 16.2 14.2
CTde f ault 10 32.7 17.0 16.4
CTde f ault 15 43.5 16.3 15.8
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